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Proof of Finalization: A Self-Fulfilling
Function of Blockchain

Aixian Deng , Qian Ren , Yingjun Wu , Hong Lei , and Bangdao Chen

Abstract— Blockchain has been widely used in various indus-
tries for providing trustworthy data. On-chain data can be
regarded as trusted after it is finalized by blockchain consensus,
namely after the data is believed to be immutable. Unfortunately,
nodes with poor/isolated network conditions are still susceptible
to data spoofing attacks of blockchain view, spawning kinds
of severe attacks. For example, a light node newly joining a
blockchain network may request the blockchain view from a
malicious full node and accept a spoof view, leading to a double
spending attack. Besides, a Trusted Execution Environment
(TEE), the network stack of which is fully controlled by its host,
may be fed spoofed blockchain data as input, undermining the
trustworthiness of TEE-based computation by cheating inputs.
To resist data spoofing, existing methods rely on a trusted
authority to identify trusted data, or timely provide sufficient
confirmation blocks for a block b to prove the finalization of
b (since the adversary holding less hash power than the honest
blockchain node cannot generate the confirmation blocks timely).
These methods either suffer the risks caused by centralized trust
base or are only PoW-oriented and high-latency. As promising
blockchains including Ethereum migrate to energy-saving con-
sensus, e.g., PoS, designing consensus-agnostic approaches against
data spoofing becomes an urgent need of the industries. In this
paper, we introduce a Proof of Finalization (PoF) problem for
proving the finalization of blockchain to prevent data spoofing
attacks of blockchain. We also contrive a novel PoF scheme,
which leverages the chain quality property of blockchain to
establish a trustworthy committee for proof generation. The
scheme is chain-agnostic, non-interactive, non-authority-involved,
and with negligible latency. Once blockchain data is finalized, the
latency of proof generation in our scheme is only 106 milliseconds.
Therefore, our scheme paves the way for any system, e.g.,
light nodes, cross-chain bridges, and layer-2 systems, to read
blockchains with various consensus securely.

Index Terms— Blockchain, proof of finalization, chain quality.
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I. INTRODUCTION

BLOCKCHAIN is a distributed system where consen-
sus nodes collectively maintain a tamper-proof ledger

that provides trusted data for individuals, enterprises, and
so on. In many systems, participants indisputably reach
an agreement through blockchain. For example, blockchain
is widely employed in cryptocurrency systems (e.g., Bit-
coin, Ethereum) to form an undisputed linear sequence of
all confirmed transactions, thus solving transaction conflicts
among participants. The support for smart contracts further
expands the application of blockchain. When a smart con-
tract is executed, its contract code, parameters, and state are
immutably recorded on a blockchain, leading to a trusted
world state. In conclusion, blockchain serves as a “trusted
database”.

However, blockchain data is not unconditionally trustwor-
thy. For example, in Bitcoin, the current main chain may
be reverted by another forked chain that is longer than it.
Then transactions in reverted blocks will become invalid.
In practice, data finalized by the consensus mechanism of
blockchain is regarded as trusted. For example, in proof-of-
work (PoW) consensus protocols, a block is believed to be
trustworthy when getting X-confirmation on the main chain.
X-confirmation means that after a block is generated, there
are X-1 blocks following it on the main chain. The value of
X depends on the difficulty of hash puzzles and the assumed
upper bound of hashing power held by malicious nodes. For
accuracy, in the latter paragraphs, we will use the adjective
“finalized” to qualify a thing to represent its trustworthiness
on a blockchain, e.g., finalized data/transaction/block, and the
opposite expression is “unfinalized”.

Motivation example: Even if a blockchain’s consensus
mechanism is designed to be secure enough to clearly delineate
between finalized and unfinalized data, an adversary can still
make victims adopt unfinalized data as finalized to benefit
from it. We call these misbehavior data spoofing attacks,
which harm the security of numerous services relying on
blockchain. For example, in simplified payment verification
(SPV), lightweight clients only maintain the block headers
of a blockchain and verify transactions by Merkle proofs.
To update block headers correctly, a client should satisfy the
network assumption that it is always connected to at least
one honest node [9]. An adversary may isolate a client from
blockchain networks and fully control its blockchain data
source (which is usually called eclipse attack [23]), breaking
the network assumption of the client. Then the adversary feeds
the client fake block headers. As a result, a fake transaction
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created by the adversary will pass the client’s verification,
leading to a further double-spending attack. These attacks raise
an essential research problem: Can we prevent a client from
data spoofing attacks (accepting unfinalized blockchain data
as finalized), even if all its network I/O is controlled by an
adversary?

Solutions and Limitations: The common method for pre-
venting data spoofing attacks is leveraging a trusted authority
to identify finalized data (e.g., RPC service providers, the
blockchain’s development team). RPC service providers [1],
[3], [6] identify finalized blockchain for users who are confi-
dent about their reputation and employ their blockchain access
service. Similarly, the Bitcoin node software development
team hard-codes the hash value of a certain block b, the
checkpoint, into the Bitcoin clients, identifying the finalized
blockchain which starts from the genesis block and ends
with b. With the checkpoint, disoriented nodes (e.g., nodes
isolated from blockchain networks by an adversary) can
identify and eventually follow the finalized blockchain ends
with b. However, as the client needs to periodically fetch
blocks/checkpoints from a trusted authority, this method suf-
fers from single point of failures (SPOF).

Besides introducing a trusted authority, researchers explore
another method [13], [15], [16] to resist blockchain data
spoofing. Specifically, these works leverage the hashing power
advantage of honest blockchain nodes, timely delivering suf-
ficient confirmation blocks for a block as finalization proof.
However, these methods are only PoW-oriented. What’s more,
to ensure that the probabilities of false negatives (i.e., an adver-
sary forges sufficient confirmation blocks successfully and
timely) and false positives (i.e., honest blockchain nodes fail to
create sufficient confirmation blocks timely) are both less than
0.001, their latency for generating proof is around 50 block
intervals (cf. Table I). In Bitcoin, 50 block intervals approx-
imately equal 8 hours. Thereby, existing methods without
the presence of trusted authority are PoW-oriented and high-
latency, hardly fitting practical needs.

Our Work: In this paper, we introduce a Proof of Final-
ization (PoF) problem which is for proving that data has been
published on a blockchain and finalized. We also propose a
protocol to solve the problem. The protocol relies on the chain
quality [21] property of blockchain to organize a committee
by miners. The property means that among miners of k or
more consecutive blocks on the main chain of a blockchain,
the proportion of honest miners is no less than µ. Utilizing
the chain quality property, the percentage of honest committee
members in our protocol is at least µ. The committee is
responsible for identifying the finalized blockchain and peri-
odically generating the multi-signature of the latest finalized
block as proof. The proof proves the finalization of the
blockchain which starts with the genesis block and ends with
the signed block. When receiving blockchain data, verifiers
only accept data proved by the proof. Thereby, PoF prevents
verifiers from accepting unfinalized data as finalized.

Notably, the proof generation is authority-free, chain-
agnostic, and low-latency, and the proof verification is
non-interactive. Specifically, committee members are ran-
domly selected from miners and rotated, without relying on

a trusted authority. The protocol is chain-agnostic since any
blockchain satisfying the chain quality property supports our
protocol, whilst chain quality is a basic blockchain property
that can be extracted from various consensus blockchains
(PoW, PoS etc.). Committee members can reliably access
the latest blockchain views and immediately multi-sign the
latest finalized blockchain. Therefore, the latency for proof
generation equals an ignorable multi-signature generation time
immediately after the latest block is finalized. Namely, the
latency is almost minimized. Besides, verifiers independently
verify the proof to identify the finalized blockchain from
untrusted blockchain views without interaction with other
nodes. Thereby, our PoF scheme is admirably suited for
protecting any service (especially the isolated/vulnerable nodes
such as light nodes of wallets, and TEE nodes of confidential
smart contract frameworks [36], [37] ) relying on trusted data
from blockchain against data spoofing attacks.

Contributions: In summary, this work makes the following
contributions:

• We introduce the PoF problem which is for proving that
data has been finalized on a blockchain.

• We design a novel PoF protocol, which is chain-agnostic,
low-latency, non-authority-involved, and non-interactive, thus
becoming the first ready-to-use universal PoF protocol.

• We implement the PoF protocol and evaluate it on both
PoW and PoS blockchains.

Organization: We introduce related work in Section II.
Section III models blockchain and introduces weighted multi-
signature schemes. In Section IV, we define the proof of
finalization problem. Section V outlines the PoF protocol.
We detail the protocol and its security analysis in Section VI.
Section VII contains the evaluation of PoF on proof generation
latency and proof verification time. We explore extensions
(e.g., feasible reward-punishment mechanism) and applications
(e.g., protect TEEs in TEE-blockchain systems) of PoF proto-
col in Section VIII, and conclude in Section IX.

II. RELATED WORK

In this section, we explore data spoofing attacks and other
related attacks, and introduce countermeasures, especially PoF
solutions for data spoofing attacks.

Data Spoofing Attacks and Solutions: In data spoofing
attacks, the adversary makes victims mistake data unfinalized
by a blockchain consensus for finalized, e.g., eclipse attack
and race attack [24], while the blockchain’s consensus is
still secure. In an eclipse attack, recall that in Section I we
exemplify that a lightweight client isolated by an adversary can
be cheated by unfinalized data. In a race attack, the adversary
usually targets the entity that accepts a transaction as finalized
prematurely. For example, assume an exchange requires a
transaction to get just X ′ < X confirmations to accept,
where the transaction actually requires X-confirmation to be
finalized according to the blockchain’s consensus mechanism.
An adversary may send two conflict transactions A and B
on a blockchain at the same time, e.g., for the same coins,
A transfers to the exchange, while B to an address held by the
adversary. To launch a race attack, the adversary first mines a
fork to make A satisfy X ′-confirmation, spoofing the exchange

Authorized licensed use limited to: Hainan University. Downloaded on March 16,2025 at 13:28:55 UTC from IEEE Xplore.  Restrictions apply. 



8054 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
THE COMPARISON OF POF SCHEMES. CHAIN-AGNOSTIC REFERS TO

THE ABILITY TO DECOUPLE THE SCHEME FROM A SPECIFIC
CONSENSUS. LATENCY INDICATES THE TIME IT TOOK TO
PRODUCE THE PROOF OF FINALIZATION. ● IMPLIES THAT

THE SCHEME FULLY SATISFIES THE PROPERTY OR RESISTS
THE ATTACK, AND ❍ IS THE OPPOSITE OF ●

with the fork. Then, it immediately shifts to the main chain
containing B after receiving coins from the exchange. When
B becomes finalized, which invalidates A, the adversary gets
the coins it wants without paying the exchange. Data spoofing
attacks are the problem that this paper aims to resolve.

To guard against data spoofing attacks, there are schemes
seeking to protect blockchain users reading finalized data by
providing a corresponding proof of finalization. We identify
the problem as PoF, and classify existing PoF schemes into
two categories: with trusted authority and without.

The first category of PoF schemes relies on a trusted author-
ity, such as existing RPC service providers [1], [3], [6] and
the blockchain’s development team, to identify finalized data,
where users regard the authority’s endorsement as finalization
proof. However, this way suffers from SPOF.

Without introducing authority, the other category of PoF
schemes [13], [15], [16] timely provides X confirmation blocks
of a block b as b’s finalization proof. However, these works
are only PoW-oriented and high-latency. Differently, [38]
proposed a new method called reverse link. The high-level
idea of [38] is to let previous miners independently sign
their succeeding blocks to endorse which succeeding fork is
the main chain. Specifically, each miner, mined a block bi ,
is required to send a transaction to publish its signature of
bi+m , a block finalized after bi where m is fixed. The signature
is verified by the unique public key the miner recorded in
bi ’s block header. This transaction is called a hook transaction
and should be included before bi+n , where n > m, forming
a reverse link bi → bi+m . The reverse link indicates an
endorsement of the bi ’s miner to its unique succeeding fork
until bi+m . With reverse links, honest miners can mark out
the main chain by recursively showing their endorsement of
the main chain. The finalization proof of a block consists of
a specific number of endorsements for the fork that contains
the block. However, [38] requires consensus modification on
block header to include the public key, thus being unsuitable
to legacy blockchains, and it requires high latency for proof
generation, as shown in Table I.

Inspired by reverse link, this paper proposes a novel PoF
protocol. We inherited the idea in [38] of having previous
miners endorse their only successor. Differently, our PoF
protocol is built from the chain quality property without
consensus modifications, making it chain-agnostic. We reduce
the latency of proof generation to a negligible multi-signature
generation time, which is around 100 milliseconds according
to our evaluation results (refer to Section VII-A for details).
Compared with other PoF schemes which either suffer from
the SPOF of the relied trusted authority or are chain-restricted
and high-latency, our PoF presents strong universality and high
availability. Please refer to Table I for details on comparing
the existing PoF schemes and our scheme.

Consensus Attacks and Solutions: In consensus attacks of a
blockchain, the adversary aims to undermine blockchain con-
sensus, failing the consensus in finalizing data or invalidating
the data previously finalized. To subvert consensus, on the one
hand, the adversary may break the security assumption of the
blockchain consensus, e.g., controlling ≥ 51% hash power of
miners in PoW, corrupting ≥ 1/3 miners of PBFT. Relevant
attacks include the 51% attack, Bribery attack [20], Sybil
attack [35] against consensus, etc. Specifically, the Bribery
attack bribes profit-oriented miners to manipulate consensus.
The Sybil attack against consensus means that an adversary
creates numerous fake identities (or Sybil identities) to make
a disproportionately large influence on blockchain consensus.
In practice, these attacks are typically avoided by prohibitive
attacking costs with meager/negative profits. For example,
in Bitcoin, controlling enough hashing power for a 51% attack
costs over $96 billion [2], which far outweighs block rewards.
Similarly, Sybil identities can be reduced by the deposit costs
required for consensus participation.

On the other hand, the adversary may exploit the security
flaws of the blockchain consensus to undermine consensus.
For example, in PoS blockchains, mining a block does not
cost much like in PoW. Hence, the adversary can launch
the long-range attack [40] that forks a PoS blockchain at a
quite early position (e.g., the genesis block) by compromising
early miners. When the fork is longer than the original main
chain, the attack becomes successful. To mitigate the problem,
key evolving signature (KES) [11] emerged. Concretely, each
miner holds a pair of keys (pk, ski ) to sign blocks it mined,
where the public key pk is constant, while the private key ski
is periodically rotated. ski in the i-th period is derived from
ski−1 in the previous period. Each miner erases ski−1 when
completing the derivation of ski . Note that the probability of
successfully recovering the erased private keys from ski is
negligible. Consequently, employing KES prevents the long-
range attack, since the private keys used to sign early blocks
cannot be reverted [18].

Note that resisting consensus attacks is considered by
consensus designers to achieve consensus security, typically
realizing the chain growth, chain quality, and common prefix
properties, outside the aims and ability of this paper. However,
the protocol proposed in this paper can help mitigate some of
these attacks. For example, in the Sybil attack against consen-
sus where Sybil miners exist but have not fully compromised
the consensus security, our protocol can help to identify the
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TABLE II
INTRODUCTION OF THE TRANSACTION FIELDS

data spoofing misbehavior of Sybil miners, e.g., misleading
other miners to follow their fork. Finally, these Sybil miners
can be better identified and punished.

Application attacks and Solutions: Some application
attacks, which happen in the application/contract layer of
a blockchain, tend to be confused with the data spoofing
attacks this paper solved. For example, in Sybil attacks against
application layers, the adversary may create multiple Sybil
accounts [31] to take away huge airdrops or cause the DDoS
attacks [42]. Similar attacks in this form include the spam
attack [10], [28], [43], in which the adversary sends numerous
spam transactions to cause a denial of service. As the trans-
actions led by these application-layer attacks are still legal
transactions regarded by a secure consensus, these attacks are
orthogonal topics to this paper. However, the orthogonal nature
makes it easy to adopt corresponding countermeasures [25],
[35] in parallel with the protocol proposed in this paper.

Efficient Query of Blockchain Data: Some works provide
efficient query services of blockchain data, e.g., constructing
relational blockchain database [32], [39], [49], and encapsu-
lating authenticated data structure in blocks [44], [47]. While
these works seek to effectively handle users’ specific searching
requests on blockchain data, our PoF protocol helps users
identify the finalized data of a blockchain, therefore, we think
that PoF and these works are complementary.

III. PRELIMINARIES

In this section, we model blockchain and describe weighted
multi-signature schemes, foreshadowing the following intro-
duction of protocol design.

A. Blockchain

Referring to [17] and [26], we model a blockchain system
BC as a chain of blocks finalized by a set of distributed miners
following a consensus algorithm cons. Specifically, a BC is
identified by a chain ID BC.idc and it works as follows.

Each user of BC has a pair of keys (pk, sk) and its own
address. A user uses its private key sk to sign its transactions,
the integrity and authentication of which are verified and
identified by its address derived from the public key pk.
Table II lists the general information a transaction includes.
A transaction is valid if its signature and format are correct.

A BC may have different blockchain forks, each of which
is a chain of blocks (b0, b1, . . . , bi ). Each block packs a
transaction sequence tx := (t x1, t x2, . . . , t x j ). Each block
also has a height: Let the height of the genesis block b0 in the
blockchain fork be 0, and the heights of the subsequent blocks
(b1, . . . , bi ) are incremented from 1 onwards. A block b is
defined as the tuple b := (Header, Body), and b is identified

by the block hash computed from Header . Body contains the
transaction sequence tx, and tx encompasses a special coinbase
transaction to give a reward to the creator (so-called miner)
address of b. Header consists of the hash of b’s predecessor
block in the blockchain fork, the Merkle tree root of tx, and
some other elements. For clarity, the height, hash, and miner
address of b are denoted by b.height , b.hash, and b.miner
respectively. If every block bi in a blockchain fork has correct
(Header, Body) format, and the Header correctly indicates
bi ’s predecessor in the blockchain fork, we say the blockchain
fork is valid.

Blockchain Consensus: There is a set of nodes, miners,
following a consensus algorithm cons to maintain and extend
BC. The cons ensures that honest miners refer BC to the
same finalized blockchain fork, while each miner may have
different blockchain forks. Concretely, the consensus cons
introduces a function mine for miners to conduct a mining
process. Conforming to [21], cons extends BC in rounds.
In each round r , each miner indexed at i respectively collects
transactions from other users and packs them into a new block
to extend the blockchain fork BCi it holds. Let txi be a
sequence of transactions collected by the miner. The function
mine takes BCi held by the miner and txi as inputs, and
outputs BC′

i which is the extended version of BCi , where
BC′

i = (BCi := (b0, b1, . . . , b j )) ∥ b j+1, and the transaction
sequence of b j+1 is txi . After the round of cons, all miners are
able to complete the computation of BC.mine respectively and
synchronization of their blockchain forks, the set of which is
denoted as BCi . Only one blockchain fork becomes finalized
by cons, and the fork will be referred to as BC without
ambiguity. Formally, in each round, cons takes BCi and BC
as inputs and outputs BC′, the updated version of BC. Let
BCm ⪯ BCn represents that BCm is a prefix of BCn , and it is
satisfied that BC ⪯ BC′

⪯ BCi and BCi ∈ BCi .
Blockchain Interfaces: A blockchain BC provides the

following BC’s functions invoked by users:
• BC.read(m[, n]): The function has two input fields: a

required block height m and an optional block height n > m.
The function returns the block bm on BC when only taking
m as input, or returns the block sequence (bm, . . . , bn) on BC
when taking the complete two inputs m and n. Assume bi is
the last block of BC with height i , if m > i or n > i , the
returned block(s) after bi would get padding by ∅.

• BC.send(t x): If the transaction t x is valid, then t x would
eventually be included into BC.

• BC.validate(b := (bx , bx+1, . . . , bx+y)): The function
takes a block sequence which constitutes a blockchain (frag-
ment) as input and outputs 1 if the blockchain (fragment)
is valid, otherwise 0. Note that BC.validate(b) = 1 only
determines the validity of b, not the finalization that b ⊆ BC.

Blockchain Properties: After modeling blockchain, now we
introduce three blockchain properties: common prefix, chain
growth, and chain quality [21]. The properties have been
widely employed as evaluation indicators in various consensus
designs, involving PoW [34], PoS [41], PBFT [33], etc. The
definitions of the three properties are as follows:

• Common prefix: The common prefix property with param-
eter d ∈ N states that for any two honest miners respectively
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holding blockchain fork BC1 and BC2 at round l1 and l2
(l1 < l2), i.e., BC1 ∈ BCi at round r1 and BC2 ∈ BCi at
round r2, BC1 after cutting the d last blocks will be the prefix
of BC2.

• Chain growth: The chain growth property with parameter
τ ∈ R states that for l ∈ N and any honest miner holding
blockchain fork BCi ∈ BCi at a round, BCi will expand by
at least τ · l blocks after passing l consecutive rounds.

• Chain quality: The chain quality property with parameters
k ∈ N and µ ∈ R+ states that for any honest miner holding
blockchain fork BCi ∈ BCi at a round, in any consecutive
k blocks of BCi , the proportion of blocks created by honest
miners is at least µ.

B. Weighted Multi-Signature

A weighted multi-signature is a joint signature generated
by signature group members M which consist of t members
(M := {m1, m2, . . . , mt }). Each member mi has a signature
weight wi . A joint signature is valid if it reaches a specific
weight threshold. Formally, in a ts-of-n weighted multi-
signature scheme, ts is the weight threshold, and n is the total
weight of members M who hold signature weight. M’s weight
distribution wM should satisfy:

(wM := (w1, w2, . . . , wt )) ∧ (6wM = n)

A valid weighted multi-signature can be created by members
m ⊆ M whose weight distribution is wm, and satisfies:

6(wm := (w1, . . . , w|m|)) ≥ ts

Weighted multi-signature schemes are classified into two
types: (i) Collect the independent signatures of m as a joint
signature. (ii) Based on (i), use an aggregation function to
aggregate the collected independent signatures into a joint
signature, whose size is the same as an independent sig-
nature [12], [14]. Formally, each member mi ∈ M uses a
digital signature scheme DS(KGen, Sig, Vrf). A key gener-
ation algorithm KGen(1λ) takes the security parameter 1λ

as input and outputs a public/secret key pair (pk, sk). Each
member mi holds a key pair (pki , ski ) generated by KGen.
A signing algorithm Sig(sk; m) takes a secret key sk and a
message m as inputs and outputs a signature s. A verification
algorithm Vrf(pk; m, s) takes a public key pk, a message
m, and a signature s as inputs and outputs 1 if s is a
valid signature of m, otherwise 0. We simply model the
verification algorithm for blockchain users’ signatures (refer to
Section III-A) as Vf(ad; m, s), where ad is not a public key
but a user’s address derived from its public key. A valid joint
signature s in scheme (i) can be expressed as:

s := {si := DS.Sig(ski ; m) | mi ∈ m}

Denoted the aggregation function in scheme (ii) and a size
query function as aggre and sizeof, then a valid joint signa-
ture S in scheme(ii) satisfies:

(S := aggre(s)) ∧ (sizeof(S) = sizeof(si ))

Scheme (i) has excellent compatibility since nearly all
current major blockchains support it. The advantage of scheme

(ii) is that the size of its multi-signature is constant and does
not float with the threshold value. However, it falls short in
compatibility because its relevant principles, mainly bilinear
maps or point multiplication in elliptic curve cryptography
(ECC) [48], are more sophisticated than scheme (i) and harder
to implement on-chain. Besides, the aggregate signature based
on bilinear maps typically uses the BLS signature, which is
unsuitable to some mainstream blockchains (e.g., Ethereum
using ECDSA to sign user transactions). In our PoF protocol,
some specific miners would be the signature group. Thereby,
we employ scheme (i) due to its compatibility, which helps to
achieve chain-agnostic PoF by only requiring miners to have
the bare minimum ability to generate and verify signatures.
The compatibility is also useful when introducing a PoF smart
contract which can verify proofs, i.e., multi-signature (cf.
Section VIII).

IV. PROOF OF FINALIZATION

In this section, we introduce the PoF protocol. We start
with an intuitive sketch. Given the blockchain BC (refer to
Section III-A for details), the data recorded on BC must be
finalized. PoF is a protocol that aims to generate proof for
the data to prove its finalization. By verifying the proof, even
without trusted blockchain data sources, a node can identify
finalized data, ensuring that it never mistakes unfinalized data
for finalized. We define PoF as a triple of functions (setup,
genProof, vrfProof), which are used to initialize a setup,
generate a proof for finalized blockchain data, and verify the
proof, respectively. We model the three functions as follows:
• setup: It takes a security parameter λ as input, and
outputs a pair of parameters (arge, argv), where arge is a
proof generation parameter and argv is a proof verification
parameter.

(arge, argv) := setup(λ).

• genProof: It takes as inputs any data dt on BC (There exist
m, n to satisfy dt ∈ BC.read(m[, n])) and arge, then returns
a finalization proof pr f of dt .

pr f := genProof(dt, arge).

• vrfProof: It takes a proof pr f , data dt , and argv as inputs
and outputs a verification result bl. bl is a Boolean value where
1 means that pr f is a valid proof of dt and 0 otherwise.

bl := vrfProof(pr f, dt, argv).

A secure PoF protocol satisfies completeness and soundness
properties defined as follows:

• Completeness: Given a security parameter λ, there
is a negligible function negl such that for any pr f :=

genProof(dt, arge), where dt is any data on BC, it holds
that:

Pr
[
vrfProof(pr f, dt, argv) = 1

]
≥ 1 − negl(λ).

• Soundness: Given a security parameter λ, there is a
negligible function negl such that for any dt ′ not on BC (There
exist no m, n to satisfy dt ′ ∈ BC.read(m[, n])), any proof
pr f ′ of dt ′ holds that:

Pr
[
vrfProof(pr f ′, dt ′, argv) = 1

]
≤ negl(λ)
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V. PROTOCOL OVERVIEW

We design a PoF protocol to resolve the PoF problem. In this
section, we introduce the protocol’s system model, adversary
model, and system goals, and present the overview of the
protocol.

A. System Model

The PoF protocol involves three entities:
Blockchain (BC): The blockchain BC conforms to the

blockchain model depicted in Section III-A, which mainstream
blockchains such as Bitcoin and Ethereum satisfy. Therefore,
the blocks on BC are finalized, and BC satisfies the common
prefix, chain quality, and chain growth properties [21] so
that it can continuously handle and finalize new transactions
according to its consensus mechanism.

Committee Members (M): Committee members are some
specific miners of BC selected by our protocol to generate
proof for the blocks on BC. Each member determines BC
based on its blockchain view and BC’s consensus mechanism.

Verifiers (V): Any node susceptible to being spoofed by
unfinalized blocks can optionally become a verifier. When
receiving a block claimed as finalized, a verifier validates
the block’s finalization by verifying the corresponding proof
provided by our protocol. In this way, the verifier will never
mistake unfinalized block fed by unreliable connected nodes
for finalized.

B. Adversary Model

We assume a probabilistic polynomial-time (PPT) adversary
A exists in the protocol execution. The adversary aims at
spoofing verifiers with unfinalized blockchain data, while its
ability is as follows:

Blockchain: A can statically corrupt miners of BC, i.e.,
each miner node has been corrupted or not before becoming
the miner of blocks in BC; each honest (resp. corrupted)
miner remains honest (resp. corrupted) in protocol executions.
However, as entailed in our assumption of BC, the miners
corrupted by A are insufficient to destroy the common prefix,
chain quality, and chain growth properties of BC, and all
honest members can reliably access the latest blockchain view
of BC.

Committee Members: We assume all selected honest BC’s
miners will join the committee. Besides, honest committee
members can synchronize information through a committee
network. These assumptions are practical, and we demonstrate
existing solutions meeting the assumptions in Section VIII.

Verifiers: Each verifier itself is honest. A can fully control
the I/O of any verifier, e.g., isolating a verifier from the real
blockchain network and sending unfinalized blockchain data to
the verifier. However, before A launches isolation, we assume
each verifier can be trustworthily set up with a specified
finalized block. Although this setup is essentially a trusted
setup, we note that there already exist many mechanisms
for a verifier to obtain the block with mitigated spoofing
risks. For example, an SPV node usually synchronizes block
headers from reputable RPC service providers [1], [3], [6],

Fig. 1. Overview of the PoF protocol. The PoF committee members are
miners of the n consecutive blocks preceding the block containing the location
transaction. The blue blocks represent finalized blocks. After verifying proof,
the verifier can identify the finalized blockchain containing the genesis
block b0 to the signed block bc+i.

checkpoints sync endpoints [4], the infrastructure in under-
lying blockchain [5], etc. and can cross-validate the data
obtained. We stress that each verifier only needs to synchronize
the finalized block once as the root of trust. Thereafter, the
verifier’s network I/O can be fully controlled by A.

C. System Goals

In this section, we describe the system goals in devising
PoF protocols:
Completeness: The blocks on BC and the corresponding
proofs can successfully pass the validation of each verifier,
satisfying the completeness in PoF definition (Section IV).
Soundness: A can generate a proof for an unfinalized block.
Any unfinalized block and its proof generated by A can
pass the validation of a verifier with negligible probability,
satisfying the soundness in PoF definition.

D. Overview

Conforming to the definition in Section IV, our PoF pro-
tocol runs in three phases: setup, genProof, and vrfProof,
corresponding to the global setup, proof generation, and proof
verification respectively. Now we present the three phases as
follows:

setup phase. During the global setup phase, the proto-
col configuration is published, the committee members are
determined and initialize the proof generation parameter, and
verifiers initialize the proof verification parameter.

Any blockchain user posts a location transaction on BC
(Step (1) in Fig. 1). The transaction contains a protocol config-
uration, including the required committee size n and threshold
ts (i.e., the least weight of a set of independent signatures cre-
ated by committee members to secure a proof). The transaction
would eventually be packed into a finalized block (denoted
as bc), and locate the miners of the consecutive n blocks
immediately preceding bc as committee members. Each mem-
ber initializes the proof generation parameter, including ts
and the committee’s weight distribution. Next, each verifier is
initialized with the block bc. According to our assumption, the
verifier trusts that the bc it obtains is indeed the finalized block
that contains the location transaction. After validating the
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determined protocol config in bc, the verifier fetches the valid
blockchain fragment consisting of the consecutive n blocks
before bc, then initializes the proof verification parameter,
including ts and the committee’s weight distribution, from bc
and the blockchain fragment (Step (2)).

genProof phase. The committee starts to generate proofs
for finalized blocks. Specifically, each committee member
independently determines the block bc+1 following bc based
on its blockchain view, and signs the chain ID and the block
hash of bc+1. Committee members will synchronize their
independent signatures through the committee network. When
the weight of independent signatures for bc+1 achieves the
threshold ts, a valid weighted multi-signature can be generated
as proof. Considering the compatibility of signature schemes,
we adopt scheme (i) in Section III-B for proof generation.
Namely, the proof is the set of independent signatures with
weights of at least ts. The proof proves the finalization
of the blockchain which starts from the genesis block b0
and ends with bc+1, since bc+1 functions like a checkpoint.
Then any committee member can provide the proof when
being requested. Starting from bc+1, the committee would
consecutively generate proof for finalized blocks subsequent
to bc to identify the latest finalized blockchain (Step (3)).

vrfProof phase. After the setup phase, each verifier can
identify the finalized blockchain even if its connected nodes
are untrusted. Concretely, the verifier updates its blockchain
view from its connected nodes (Step (4.1)), and requires a
proof simultaneously (Step (4.2)). With the verification param-
eter initialized in the setup phase, the verifier can execute its
verification procedure. Only if the proof passes the verification
procedure, the verifier accepts the finalized blockchain which
starts from b0 and ends with the block signed in the proof
(Step (5)). We note that the proving phase and verification
phase are independent of each other, committee members and
verifiers don’t need to interact with each other.

VI. PROTOCOL DETAIL

In this section, we describe in detail the PoF protocol πpof ,
introduce optimizations, and make a security analysis.

A. Protocol Details

In Fig. 2 we illustrate the protocol’s workflow, which
involves three phases: the setup phase, genProof phase, and
vrfProof phase.
setup phase. During the setup phase, the PoF committee M
is established, each member mi ∈ M initializes the proof
generation parameter arge, and each verifier v initializes the
proof verification parameter argv .

location transaction t xc(n, ts)
sender : the blockchain user’s address

data: PoF config including n and ts

Any user of BC can initiate a location transaction t xc
including PoF configuration by invoking BC.send(t xc(n, ts)),
where (n, ts) is generated from a security parameter λ via
the function Gen(1λ). The protocol configuration includes
a required committee size n and threshold ts (i.e., the least

Fig. 2. The PoF protocol.

weight of a set of independent signatures created by committee
members to secure a proof). To ensure the uniqueness of the
location transaction, miners only admit the first valid location
transaction recorded on BC. After t xc is recorded in a finalized
block bc with the height hc (i.e., hc := bc.height), the com-
mittee members of M are determined, which are the miners of
the n consecutive blocks b := BC.read(hc − n, hc − 1). Note
that the miners may be repetitive (e.g., 2 blocks in b are mined
by the same address). Thus, the committee M consists of t ≤ n
members and runs a weighted multi-signature scheme. Each
member mi holds a public/private key pair (pki , ski ) for the
generation and validation of its signature, and its blockchain
address adi is derived from its public key pki . mi will be
assigned a weight value wi linked to its address adi , and
wi is determined by the number of blocks mined by mi in
b. Formally, the committee M := (m1, m2, . . . , mt ), where
each member mi holds a key pair (pki , ski ). Let wM be a
key-value map to represent M’s weight distribution where
keys are member addresses and values are the corresponding

weights, it satisfies
t∑

i=1
wM[adi ] = n where

wM := (ad1 → w1, . . . , adt → wt )

Each member mi initializes the proof generation parameter
arge := (ts, wM) and the block b j , which is the first block to
prove (refer to Algorithm 1). Specifically, mi first obtains the
threshold ts recorded in t xc ∈ bc. Second, mi obtains wM by
retrieving the coinbase transactions in b. Finally, mi initializes
b j with BC.read(hc + 1).
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Algorithm 1 Committee member (mi )

1 Procedure initialize(bc)
2 assert t xc(n, ts) ∈ bc is the first location transaction
3 b := BC.read(hc − n, hc − 1)

4 for each block bi ∈ b do
5 // initialize an address-to-weight map wM
6 adi := bi .miner
7 // initial value of wM[adi ] is 0
8 wM[adi ] := wM[adi ] + 1
9 arge := (ts, wM)

10 b j := BC.read(hc + 1)

11 return (arge, b j )

12 Procedure generateProof(b j , arge)
13 assert b j := BC.read(b j .height) ̸= ∅

14 si := DS.Sig(ski ; (BC.idc, b j .hash))

15 // collect a set of signatures s of b j from members
m ⊆ M

16 collect s := {s1, s2, · · · , s|m| | ∀mi ∈ m ⊆ M, si ∈ s}
17 ws := 0
18 for each signature si ∈ s do
19 if DS.Vf(adi ; BC.idc, b j .hash, si ) = 1 then:
20 ws := ws + arge.wM[adi ]

21 if ws ≥ arge.ts then:
22 prf j := s
23 post prf j on the proof publication location
24 return prf j

Each verifier v is initialized with the block bc in a trust-
worthy manner (assumed in Section V-B), then extracts and
validates the PoF config in the location transaction t xc ∈ bc
according to the chain quality property (refer to Algorithm 2).
Concretely, the chain quality property entails that in any
consecutive k or more blocks of BC, the proportion of honest
miners is at least µ. To leverage the property, for t xc(n, ts),
v validates n ≥ k and ts > ⌊(1 − µ)n⌋. We note that
the protocol configuration is flexible and can be adjusted for
different balances/levels of availability and security. We will
present it in Section VI-B. It does not matter if t xc is proposed
by a malicious blockchain user because v will reject t xc if its
PoF config contradicts the above conditions. If the config is
correct, the verifier accepts the miners of the consecutive n
blocks b as PoF committee members.

Each verifier v independently learns about the proof ver-
ification parameter argv := (ts, wM) from bc and b (refer
to Algorithm 2). Specifically, v first obtains the threshold
ts recorded in t xc included in bc. Second, v requests the
consecutive n blocks b which precedes bc from its connected
nodes, and obtains each member’s address adi and correspond-
ing weight wi to initialize and assign wM by retrieving the
coinbase transactions in b. Crucially, it is virtually impossible
for an assumed PPT adversary to forge a b′ corresponding
to incorrect wM to spoof v, because v holds the trusted
bc as a checkpoint and can validate the received b′ by
invoking BC.validate((b′, bc)), which checks the validity of
the blockchain fragment (b′, bc). With bc as the root of trust,

Algorithm 2 Verifier (v)

1 Procedure initialize(bc)
2 if n < korts ≤ ⌊(1 − µ)n⌋ then output setupFail
3 else wait for (b′

:= BC.read(hc − n, hc − 1))

4 if BC.validate((b′, bc)) = 0 then output setupFail
5 else for each block bi ∈ b′ do
6 // initialize an address-to-weight map wM
7 adi := bi .miner
8 // initial value of wM[adi ] is 0
9 wM[adi ] := wM[adi ] + 1

10 argv := (ts, wM)

11 return argv

12 Procedure verifyProof(prfx+y, bs, argv)
13 if BC.validate(bs) = 0 then return 0
14 wx+y := 0
15 for each signature si ∈ prfx+y do
16 if DS.Vf(adi ; BC.idc, bx+y .hash, si ) = 1 then:
17 wx+y := wx+y + argv.wM[adi ]

18 if wx+y < argv.ts then return 0
19 else return 1

it is ensured that any v that completes the global setup has
obtained the correct argv .
genProof phase. After t xc is finalized and determines the
committee M, each committee member mi generates and
broadcasts the signature for b j , the finalized block following
bc, independently. Concretely, mi signs the tuple of chain
ID and b j ’s hash (BC.idc, b j .hash) using its private key
ski . mi broadcasts the signature and collects signatures from
other members over the public committee network (e.g., the
public and dedicated mempool in EIP-4337). Let s be a set of
signatures collected by mi from members m ⊆ M, and ws is
the total weight of s, which is equal to the accumulation of
the weights of each signature si ∈ s. If ws ≥ arge.ts, s will be
b j ’s proof prf j . Upon prf j is created, any mi can post prf j on
the proof publication location, which has many choices (a web
server, a cloud database, etc.) and can be chosen depending on
verifiers’ convenience. Starting from b j , each mi continuously
generates proof for finalized blocks after bc to identify the
latest BC.

In addition, the committee can be rotated to improve
its security and liveness. With the rotation, a committee
can continuously sign the newly finalized blocks until the
committee rotates. To further enhance liveness, imposing
a reward-punishment mechanism on the committee mem-
bers is feasible. We demonstrate the committee rotation in
Section VI-C and a reward-punishment mechanism in
Section VIII.
vrfProof phase. After obtaining the proof verification param-
eter argv , each verifier v can identify the finalized blockchain
even if its connected nodes are untrusted. Concretely, when
updating its blockchain view from connected nodes, v receives
a block sequence bs := (bx , bx+1, . . . , bx+y) and the proof
prfx+y that is claimed to be the valid proof for bx+y . Then,
the v proceeds validation as follows (refer to Algorithm 2):
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(i) Verify the validity of bs by invoking BC.validate(bs).
(ii) Verify that each independent signature si in prfx+y can
be successfully verified by the corresponding address adi in
argv.wM, and (iii) the signature weight of prfx+y achieves the
threshold argv.ts. Then if bs passes the verification, v accepts
bs as finalized.

Note that our assumptions allow an adversary to compro-
mise the connected nodes to withhold updated blockchain
views or proof sent to the verifier, making the verifier fail to
obtain the finalized blockchain. We pinpoint that this problem
is about denial of service instead of data spoofing, thus
being out of this paper’s scope. However, we stress that in
any assumed cases including the above, since the adversary
cannot forge a valid proof for any unfinalized block (cf.
Section VI-D), the verifier will never mistake unfinalized data
for finalized, which achieves the goal of our PoF protocol.

B. Threshold Setting

Recall we leverage the chain quality property to organize a
committee whose total weight is n and threshold ts > ⌊(1 −

µ)n⌋. In this section, we elaborate that the threshold setting is
deemed as a trade-off between security and availability of PoF
and demonstrate how to tune ts and n to meet the real-world
need in different scenarios, e.g., Ethereum.

We model the process of mining n blocks as a Bernoulli
process, wherein in each Bernoulli experiment, we define a
Boolean random variable xi that has xi := 1 when the block bi
is created by an honest miner, otherwise xi := 0. Denote the
probability that a miner is honest as p, i.e., p := Pr[xi = 1].
Let the random variable x be the number of blocks mined
by honest miners in the sequence, i.e., x :=

n∑
i=1

xi . Then the

expected value of x is E[x] := np, and x satisfies binomial
distribution, i.e., x ∼ b(n, p). The probability that honest
blocks are no more than a certain value x ′ would be:

Pr[x ≤ x ′
] =

x ′∑
i=0

(
n
i

)
(p)i (1 − p)n−i (1)

Assume that a PoF committee is composed of the miners
of 48 consecutive blocks on a PoS blockchain, which has the
security assumption that the stake held by honest nodes is
over 3

4 of total stakes. We refer to the validator committee
in the Ethereum Beacon chain, which achieves the security
that the probability of the proportion of malicious validators
reaching 2

3 is less than 2−40 [7]. According to the equation 1,
we can set the threshold to no less than 36 to be comparable
with the Ethereum consensus security requirement.

Although a rising threshold ts increases the security of PoF
protocol, it leads to decreased protocol availability. Assume
each block has a different miner to simplify the scenario.
As our protocol requires at least ts signatures of committee
members to be a proof of block finality, it means that at least ts
members should be active for proof generation. Thereby, with
an excessive ts (e.g., is equal to committee size), the accidental
downtime of any member can undermine the PoF availability.
To balance the security and availability for real-world needs,
we list some reference values in Table III. Specifically, we set

TABLE III
REFERENCE VALUES FOR THRESHOLD SETTING

the committee size n to the maximum of 120, which is close
to the Ethereum committee (128 validators). We require the
security probability Pr[n−x ≥ ts] ≤ 2−40, and the lower ratio
ts/n is associated with higher availability. The PoF protocol
can adjust the committee threshold flexibly to balance security
and availability, meeting practical needs better.

C. Optimization

To avoid confusing the focus of PoF protocol, we omit some
design details of the committee in previous sections. In this
section, we elaborate on committee election and committee
rotation to reinforce the details.

Committee Election: In this work, we leverage the location
transaction to determine committee members. Naturally, the
method we propose is not the only way to organize the
committee. The key point is to publicly and deterministically
select the n consecutive blocks. For example, the location
transaction can combine with the random source (i.e., block
hash) provided by the blockchain. Then the location trans-
action’s position and a random number jointly determine the
consecutive n blocks. This method avoids the tendency that
blocks adjacent to the location transaction are more likely to
be selected, further enhancing the unpredictability of the PoF
committee members. Besides, some early miners (e.g., miners
who mine blocks close to the genesis block) may already
have exited the blockchain network or resold their accounts
to someone else. This problem can be mitigated by limiting
the range of block selection, e.g., choosing n blocks from
the recent 500 blocks. In summary, the selection method can
flexibly change according to practical needs.

Committee Rotation: The committee can be rotated to
reduce further the liveness requirement to its members. Specif-
ically, we divide the blocks on BC into different epochs, each
of which is assigned a committee to generate proof for the
epoch’s blocks. Every committee’s epoch is deterministically
derived by the first location transaction t xc (e.g., by a pseudo-
random number in t xc). Except for the first committee, each
committee’s members are selected by the last block of the
previous epoch. Besides, we can also support the active
update, where the current committee can optionally post a new
location transaction t x ′

c (with a newer PoF version number
to be distinguished from previous location transactions) on
BC to identify the next committee. The current commit-
tee will generate proof until proving the finalized block b′

c
containing t x ′

c.
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As we require the last block of an epoch finalized by
its committee to decide the next epoch, the absence of its
committee liveness would affect the liveness of our protocol.
But we emphasize that the absence of liveness can be very rare
under a proper PoF config and financial control. Specifically,
with the flexible threshold setting (cf. Section VI-B), our PoF
can tolerate the accidental downtimes of an adjustable propor-
tion of members. We can also reduce the deliberate inactivity
of misbehaving members further by introducing a reward-
punishment mechanism, which incentivizes honest and active
members and slashes inactive members (cf. Section VIII).

Besides, we designed a mechanism that when the cur-
rent committee is down, we ask the previous committees to
endorse the new rotation. Specifically, besides the own epoch,
a committee M should follow the blockchain until the next
two epochs finish and timeout. If either of the next two
committees loses liveness, M should take over to generate
missed proofs. From verifiers’ view, besides the proof signed
by Mi , the committee of the epoch i , they also accept the
proof co-signed by Mi−1 and Mi−2, where both Mi−1 and
Mi−2 should reach the threshold ts. Recall that the probability
of compromising ts members is negligible, the endorsement
by the two committees is also trusted and even stronger.
Although this mechanism cannot absolutely guarantee PoF
liveness since on rare occasions previous committees may also
be inactive, we can make this mechanism work in conjunction
with the reward-punishment mechanism and threshold setting
adjustment mechanism, mitigating the inactivity tendency of
committee members collectively and efficiently.

D. Security Analysis

Given the assumption of a PPT adversary A
(cf. Section V-B), a blockchain BC conforming to the
assumed model (cf. Section III-A), an EU-CMA secure
signature scheme DS, and a second preimage resistant
hash function, this section demonstrates the arguments that
PoF protocol πpof meets both completeness and soundness
introduced in Section IV by enumerating possible attacking
cases.

Recall the main symbols, variables, and workflow of our
protocol (Section VI): The location transaction t xc contained
in the block bc locates the n consecutive blocks preceding bc
for determining committee members, which periodically gen-
erate proof for finalized blocks (i.e., the blocks on BC). Each
member signs the chain ID BC.idc and the hash of a finalized
block b using its private key ski as proof. As the miners of
the n blocks may be repetitive, the committee runs a weighted
multi-signature scheme. Formally, the committee M consists
of t ≤ n members. Let wM represent the address-to-weight

map of M, it satisfies
t∑

i=1
wM[adi ] = n where

wM := (ad1 → w1, . . . , adt → wt )

In the consecutive n blocks b := BC.read(hc − n, hc − 1),
where hc := bc.height , denote the number of blocks mined
by compromised miners by nc. Based on the chain quality
property, we have nc ≤ ⌊(1 − µ)n⌋. With the block bc as the

root of trust, a verifier v obtains the threshold ts and wM to
constitute the proof verification parameter argv in the global
setup phase. As we set the threshold ts > ⌊(1−µ)n⌋, v accept
a fed block as finalized iff it obtains a valid weighted multi-
signature s, the total weight ws of s satisfies ws ≥ argv.ts.

Claim 1: πpof satisfies the completeness that given the
proof verification parameter argv being initialized based on
bc, for any proof prf := {s | ws ≥ argv.ts} of any block b
recorded on BC, each verifier v holds that

Pr
[
v.verifyProof(prf, b, argv) = 1

]
≥ 1 − negl(λ)

Proof: In πpof , the proof verification function
verifyProof is a signature verification algorithm, and the proof
verification parameter is argv := (ts, wM). If the weighted
multi-signature (prf) of b is valid, and argv is correct, the ver-
ification will output 1, due to the completeness of the signature
algorithm itself. To realize v.verifyProof(prf, b, argv) ̸= 1,
as the prf of b is assumed to be valid, the only chance for an
adversary A is to make a verifier v initialize an incorrect argv

to invalidate prf. Recall that v extracts argv := (ts, wM) from
the blockchain fragment (b, bc), where bc is the finalized block
containing the location transaction t xc(n, ts), and the coinbase
transactions in b := BC.read(hc − n, hc − 1) indicate com-
mittee members’ addresses (ad1, . . . , adt ) and corresponding
weights (w1, . . . , wt ). As v is assumed as honest and can
be trusted setup with bc, v can obtain correct ts and verify
received b with bc as a checkpoint. Then the last chance
for A is to make v initialize an incorrect wM under the limit
of bc. Specifically, A may try to provide v with spoofed
blocks b′ which satisfy n′

c ≥ ts and BC.validate((b′, bc)) = 1.
To achieve this, A should at least alter ts − nc block(s) in b,
which is impossible since v holds bc as a checkpoint and the
hash function used to compute block hash satisfies second
preimage resistance. Thereby, πpof satisfies completeness.

Claim 2: πpof satisfies the soundness that given the proof
verification parameter argv being initialized based on bc, for
any proof prf′ that A generates for b′, where b′ is any block
not being recorded on BC, each verifier v holds that

Pr
[
v.verifyProof(prf′, b′, argv) = 1

]
≤ negl(λ)

Proof: Conceive possible cases in which prf′ destroys
soundness: (i) A deceives v with an incorrect argv to make
v.verifyProof(prf′, b′, arg′

v) = 1. (ii) If the argv held by v

is correct, the last chance for A is trying to corrupt a set of
members (miners) m which satisfies

m ⊆ M ∧

|m|∑
i=1

wm[adi ] ≥ ts

making v.verifyProof(prf′, b′, argv) = 1, where wm is the
address-to-weight map of m, and prf′ := {s | ∀mi ∈ m,

si ∈ s}. Particularly, due to the EU-CMA secure signature
scheme run by committee members, corrupting insufficient
members (whose total weight is less than ts) cannot enable A
to forge a valid weighted multi-signature whose weight
achieves ts.

We have proved that the case (i) is impossible (cf. proof
of Claim 1). Now we consider the case (ii). As A is a
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static adversary that corrupts miner nodes before they become
the miners of blocks in BC, honest members are the honest
miners of the consecutive n blocks. Let wh be the total weight
of honest members, then the probability of the case (ii) is
Pr[wh ≤ n − ts]. Let p be the probability of a block being
mined by an honest member, then we have:

Pr[wh ≤ n − ts] =

n−ts∑
i=0

(
n
i

)
(p)i (1 − p)n−i .

As the blockchain satisfies the chain quality property that
wh ≥ ⌈µn⌉, and the threshold ts > ⌊(1−µ)n⌋, the probability
Pr[wh ≤ n − ts < ⌈µn⌉] is negligible (cf. Section VI-B).
Thereby, πpof satisfies soundness.

VII. EVALUATION

Implementation and Setup: In this section, we design
experiments to answer two questions about the PoF protocol:

• What is the latency of proof generation? Specifically, how
long does it take from a block becomes finalized until its proof
can be accessed?

• How long does it take to verify the proof?
We evaluate the latency in PoW and PoS consensus

protocols, corresponding to pre- and post-Ethereum merge,
respectively. The Ethereum merge is the joining of Ethereum
Mainnet (PoW consensus) with Ethereum’s Beacon Chain
(PoS consensus). In the Mainnet, a block is finalized when
getting 7 confirmations. While in the Beacon chain, a block is
finalized by a recent checkpoint after it, and two checkpoints
are usually 32 slots1 apart. In other words, the Mainnet
finalizes blocks one by one, while the Beacon chain finalizes
in bulk. Considering the difference, we make the committee
sign every finalized block in the Mainnet, while only signing
checkpoints in the Beacon chain. The reason is that signing
only checkpoints is sufficient to prove the finalization of block
in bulk, while also mitigating the volume of proof data, which
can degrade cost when proofs are posted on a blockchain.

We leverage the public API of Ethereum (getBlock function
and subscribe function, which are used to subscribe infor-
mation of the latest block) to simulate a member’s behavior
of accessing the latest blockchain view. Then the member can
determine when a block becomes finalized. For example, in the
Ethereum mainnet, the time of receiving the latest block with
height h, is the finalized time of the block whose height is
h−6. Besides, we have developed two programs to implement
the genProof function and vrfProof function of PoF protocol.
Each member’s key pairs used to generate and verify proofs are
generated by the public API of Ethereum (accounts.create()

function).
We perform the experiment on Intel(R) Xeon(R) Platinum

8269CY CPU with 1GB of memory, and the two programs are
written in JavaScript. In the experiment, the block interval time
is τ , the proportion of the resources (i.e., hashing power or
stake) held by honest blockchain nodes is p, and h represents
the height of a block. Members synchronize signatures in
the dedicated committee network in which transmission speed

1In the Beacon chain, blocks are separated by epoch which contains
32 slots, and either one block is generated in a slot or not.

TABLE IV
THE COMPARISON OF LATENCY. p REPRESENTS THE SECURITY

ASSUMPTION. SECURITY REQUIREMENT DETERMINES THE
PROBABILITY Pr[Xc ≥ X ] IN EXISTING POF SCHEMES, OR
DETERMINES THE PROBABILITY Pr[nc ≥ ts] IN OUR POF
SCHEME. THE SECURITY REQUIREMENT IS SATISFIED BY

ADJUSTING OTHER PARAMETERS PROPERLY UNDER
THE FIXED p VALUE. THE PINK (resp. YELLOW)

CELLS CONTAIN THE LATENCY IN EXISTING
SCHEMES (resp. OUR POF SCHEME)

is quite fast. Hence, we simulate members by the multiple
threads in the genProof program. By default, the committee
contains n := 48 members, and the committee threshold
ts := 36. We will adjust n and ts for more comprehensive
evaluation results. For convenience, we assume that members
have equivalent signature weights. Similarly, a verifier is
simulated by the vrfProof program.

A. Latency of Proof Generation

In the Ethereum mainnet, if the first block signed by the
committee is bi , then all signed blocks are bi , bi+1, bi+2, . . . .
The committee will immediately sign these blocks once they
become finalized. Hence, the latency of proof generation for
any above block is equal to the negligible time required
for the committee to synchronize information and deliver
the weighted multi-signature, which is 105.99 milliseconds
according to our evaluation results.

We also compare the latency with existing PoF
schemes [13], [15], in which provers provide X confirmation
blocks for a block within the time limit X · β · τ (β is a
multiplicative slowness factor) as the block’s finalization
proof. Denote the number of confirmation blocks provided by
an adversary within the time limit as Xc, and nc represents
the number of malicious members in our PoF committee.
We compare the latency under different security assumptions
and security requirements (cf. Table IV). The latency of
existing schemes is dramatically higher than us. Hence, our
PoF scheme is low-latency.

Additionally, we evaluate the latency with the signing
interval H > 1 (i.e., all signed blocks are bi , bi+H , bi+2H , . . . )
for references. Specifically, a public blockchain is one of
the choices for the proof publication location. If proofs are
published on-chain, H closer to 1 is associated with more
expensive interactions with the blockchain. Therefore, we eval-
uate the latency with H > 1. We find that the latency for
a block not signed by the committee is not negligible. For
example, the latency of the block bi+1 is the relative time from
the generation of bi+7 until the proof of bi+H is disclosed (i.e.,
until bi+H+6 emerges). We conclude that for any block with
height h ̸= i + j H , the latency is equal to (H −(h−i)%H)·τ ;
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Fig. 3. The latency under different committee signature intervals H . The
three-dimensional histogram shows minimum latency, maximum latency, and
average latency respectively.

for any block with height h = i+ jH, the latency is negligible.
Based on the latency formula, we set the interval H :=

8, 12, and 16 respectively and measure the corresponding
latency. Fig. 3 records the evaluation results. In general, the
average block interval time (i.e., τ ) of the Ethereum mainnet is
between 12s and 14s. Under τ := 13s, the maximum latency
at H := 16 is 322.91s ≈ 25τ , while the average latency is
97.16s ≈ 7.5τ , which is still much less than the existing PoF
schemes. When H := 12 (resp. 8), the latency can be reduced
to 5.5τ (resp. 3.5τ ).

For the Beacon chain, the committee periodically signs
checkpoints. We assume that the first block signed by the
committee is the recent checkpoint, and the committee signs it
immediately after it becomes finalized. Then the committee’s
activities will be in sync with the finalization mechanism of
the Beacon chain, i.e., the committee will sign the follow-up
checkpoints immediately after they become finalized. Thereby,
the latency of proof generation is 105.99 milliseconds, which
is the negligible multi-signature generation time.

B. Latency of Proof Verification

We expect that given a block and the corresponding proof,
a verifier can complete the proof validation quickly. Proof
verification mainly involves signature verification and block
verification. To comprehensively evaluate the latency of proof
verification, we set the signing interval H ≥ 1 and execute
the vrfProof program for a block signed by the committee
or not respectively. When H > 1, for any signed block
with height h = i + j H , only the block itself and corre-
sponding proof should be verified. While for any unsigned
block with height h ̸= i + j H , for example, the block bi+1,
its proof is the multi-signature of bi+H and the consecutive
blocks (bi+1, . . . , bi+H ). On the other hand, the larger the
threshold ts, the more independent signatures need to be
verified. Thereby, the latency is affected by H and ts. We then
measure the latency under ts := 36, and we find the latency
is 93.84 milliseconds for H := 1 and 100.81 milliseconds
for H := 8. Further, under ts := 80, the latency is
156.12 milliseconds for H := 1 and 165.16 milliseconds for
H := 16. According to the evaluation results, we concluded
that the latency of proof verification fluctuates slightly with
increasing H and ts. In other words, the impact of H and ts
is negligible. Therefore, our PoF protocol is low-latency.

VIII. DISCUSSION

A Reward-Punishment Mechanism: We explore and sketch
a promising reward-punishment mechanism for the committee
that can incentivize members to behave actively and hon-
estly, enhancing the security and availability of our protocol.
Deploying a PoF contract to implement the mechanism is fea-
sible. Each member seeking to obtain rewards should register
on the contract with deposits. A registered member mi would
be financially punished in two cases: (i) Any blockchain user
sent to the contract a transaction which contains the signature
signed an unfinalized block by mi , proving mi ’s misbehavior.
(ii) Any blockchain user challenged the committee which
includes mi to sign a finalized block b via sending a challenge
transaction, especially when detecting the committee as inac-
tive, ending up with neither b’s proof nor mi ’s signature of b
provided. The contract is able to obtain the information about
finalized blocks, e.g., solidity contracts [8] use the predefined
function blockhash(uint block Number ) to obtain the block
hash of a specific block, thus the contract can handle received
challenges correctly. Note that an honest member can always
respond to any challenge with its valid signature of b to avoid
punishment. After a committee completes its three duty epochs
(cf. the committee rotation in Section VI-C), if a member is
not punished, it will be rewarded. Thereby, the PoF contract
incentivizes honest members and punishes malicious members
for misbehavior or inactivity.

Additionally, there are many practical and widely adopted
choices for the reward source, fees paid by verifiers which
rely on PoF to prevent data spoofing attacks [22], [30],
a kind of ERC-20 token exclusively issued for PoF [29],
[46], etc. For example, we can set up several distributed
PoF service nodes to collect and store signature proofs from
the committee. We stress that the security of PoF protocol
still relies on committee members’ signatures instead of the
introduced service nodes. When any verifier requests proofs
from the service nodes, the service nodes respond with proofs
to the verifier only after observing that the verifier has paid
service fees via the contract. Additionally, as long as at least
one service node is honest, the verifier can obtain proofs.
Then the contract manages fees from verifiers as incentives
for members.

In the above reward-punishment scheme, it is verifiable that
a member receives a reward or punishment only after the
contract has validated its membership through Merkle proof.
Exemplified by Ethereum, we can deploy the contract on-
chain. Recall that each member should register on the contract
with deposits. Assuming that a member is the miner of a
block bi , then its deposit transaction carries the block number
of bi , the coinbase transaction t xcb of bi , and the Merkle proof
of t xcb. When executing the deposit transaction, the contract
obtains the block hash of bi through the blockhash(uint
block Number ) function. The input block Number is the block
number carried by the deposit transaction. Then the contract
can validate membership based on t xcb, Merkle proof, and
the corresponding block hash, and accept the corresponding
miner address as member address if the proof is correct and
all members complete deposit [27]. Thereafter, the contract
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verifiably executes rewards and punishments related to the
address.

What’s more, the above scheme’s costs can be decreased
by offloading the verification of Merkle proofs to off-chain
systems. Executing the verification in an off-chain TEE with
an attestation function, or constructing a zero-knowledge proof
(ZKP) for off-chain verification [45], is feasible. We outline
a TEE-based scheme since there are many works on TEE-
based off-chain execution [15], [19], [36]. As the contract is
no longer responsible for validating Merkle proofs, the deposit
transaction of a member only carries the block number of bi
to make the contract able to obtain the block hash of bi via
the blockhash function. To prove its membership, the member
delivers the block hash of bi , t xcb, and the Merkle proof of
t xcb to a TEE. TEE refers to a trusted execution environment
for confidential computation and offers verifiable computation
correctness via remote attestation. Additionally, the TEE has
registered on the contract with its remote attestations and the
public key of a TEE-hold account to verify the TEE’s result.
The TEE is responsible for validating the Merkle proof and
returning its signed validation results to the contract. Thereby,
when validating membership, the contract is only responsible
for validating that (i) the returned results are validly signed by
a registered TEE, and (ii) the returned results correspond to
the block hash specified by the deposit transaction, decreasing
the on-chain costs.

Besides, each miner just needs to deposit once for unlim-
ited multiple epochs when it honestly behaves. Members
are allowed to claim their reward in batches and by need
rather than claiming per each epoch or member. Therefore,
in the optimistic epoch where committee members honestly
behave and all members have deposited in previous epochs,
no deposit transaction is needed, and reward transactions
happen sometime later. Although reward transactions finally
happen with Merkle proof, we note that the claiming can
be performed in batches and members can always further
reduce the cost of proof verification by the TEE-based method.
Suppose committee members misbehave in the pessimistic
epoch. In that case, the epoch can lead to two transactions
for batch challenging and punishment respectively, where the
cost will be paid from the deposits of malicious members.
Thereby, the reward-punishment mechanism is low-cost.

In a nutshell, we outline a verifiable and low-cost reward-
punishment mechanism to enhance the security and liveness
of PoF protocol. This is only for demonstrating the feasibility
of introducing an incentive mechanism for PoF protocol, as a
rigorous design and analysis of incentive mechanism for PoF
is outside the scope of this paper. We leave the design of
incentive mechanisms, such as the specification of a challenge
transaction, the collateral costs for members’ deposits and
potential attacks, to future work.

PoF protocol for TEE-blockchain system: PoF protocol
is well adapted to isolated nodes such as TEE, we would
describe a PoF protocol for TEE-blockchain systems which
have become a research hotspot. In the systems, a TEE typ-
ically executes confidential computation based on blockchain
data and delivers computing results to the blockchain [15],
[17], [37]. However, the TEE is an isolated computation

environment whose network stack is fully controlled by the
TEE executor, which can modify, delay, and drop messages
sent to the TEE. If the TEE accepts unfinalized data fed
by the executor, it would output incorrect computing results,
destroying the trustworthiness of TEE computation results.

To resist data spoofing attacks, the TEE can choose to be a
verifier in PoF. Concretely, recall that PoF committee members
are determined by the location transaction t xc recorded in the
block bc, and we have assumed that verifiers can obtain bc.
In PoF global setup phase, the TEE loads a verification pro-
gram based on bc and several blocks preceding bc. Thereafter,
when receiving blockchain data from the executor, the TEE
only accepts the data corresponding to valid proofs passing
the verification program. Note that the executor can refuse to
provide the TEE with (i) the several blocks or (ii) finalized
data with valid proof, and only feed TEE unfinalized data.
Without (i), the TEE rejects to accept any blockchain data
since it has not loaded a verification program; Without (ii), the
TEE also rejects to accept any data since no data can pass the
verification program. Thereby, even if the TEE interacts only
with a malicious executor, it can resist data spoofing attacks
through PoF.

Future Works: In this paper, we assume a static adversary
that corrupts miner nodes before they become the miners
of the blocks in BC. However, in practice, an adversary
may concentrate its efforts on corrupting members (miners)
selected by the location transaction. Thereby, in future works,
we will extend the static-adversary assumption to an adaptive-
adversary assumption, which allows an adversary to corrupt
arbitrary miners at any point without breaking the common
prefix, chain growth, and chain quality properties.

IX. CONCLUSION

PoF is a protocol used to guard against data spoofing
attacks, and we describe a chain-agnostic, non-interactive,
non-authority-involved, and effective PoF scheme in this paper.
We evaluate the scheme and find that the latency of proof
generation and proof verification are both negligible in mil-
liseconds, proving the effectiveness of the scheme.
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