
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024 9107

One IOTA of Countless Legions:
A Next-Generation Botnet Premises Design

Substrated on Blockchain and Internet of Things
Haoyu Gao , Leixiao Li, Hong Lei , Ning Tian, Hao Lin , and Jianxiong Wan

Abstract—Although botnet had been at the top of the list of
main threats to the cyber world for an extended period of time,
its harmfulness has been constrained nowadays due to the devel-
opment of kaleidoscopic network security enforcing tools and
people’s increasing awareness. And the underlying technology of
the botnet has been stagnant ascribing to many drawbacks such
as inadequate protection of the identity of the Botmaster and
weak resilience of the botnet’s infrastructure. In this article, we
first introduce a new classification of the botnet based on botnets’
underlying network, then briefly analyze the main flaws of the
traditional botnet and some looming Blockchain-based botnets,
with pros and cons of leveraging Blockchain to construct botnets.
Furthermore, we propose one IOTA of countless legions (OICL),
a newfangled versatile botnet infrastructure that overcomes the
bottlenecks that other contemporaries cannot eliminate. It lever-
ages Blockchain, also known as distributed ledger technology
(DLT), to be its premises and uses many advantages of it without
paying too many tradeoffs. Also, we invent a whole set of commu-
nication protocols for OICL and a novel scheme called Proof of

Manuscript received 9 April 2023; revised 30 August 2023; accepted
2 October 2023. Date of publication 9 October 2023; date of current
version 21 February 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2021YFB2700601; in part by the Finance Science and Technology Project of
Hainan Province under Grant ZDKJ2020009; in part by the National Natural
Science Foundation of China under Grant 62163011; in part by the Research
Startup Fund of Hainan University under Grant KYQD(ZR)-21071; in part
by the Inner Mongolia Autonomous Region Special Program for Engineering
Application of Scientific and Technical Payoffs under Grant 2020CG0073 and
Grant 2021CG0033 in part by the Inner Mongolia Autonomous Region Key
Research and Development and Achievement Transformation Project under
Grant 2022YFSJ0013 and Grant 2022ZY0169; in part by the Inner Mongolia
Autonomous Region Higher Education Youth Science and Technology Talent
Support Program Project under Grant NJYT22084 and Grant NJYT23055;
and in part by the Inner Mongolia Autonomous Region Postgraduate Science
and Technology Innovation Project under Grant SZ2020068 and Grant
JY20220078. (Corresponding author: Hong Lei.)

Haoyu Gao is with the School of Cyberspace Security (School of
Cryptology), Hainan University, Haikou 570228, China, and also with the
Blockchain Research Group, Oxford-Hainan Blockchain Research Institute,
Chengmai 571924, China (e-mail: 1095055672@qq.com).

Leixiao Li and Jianxiong Wan are with the College of Data Science
and Application, Inner Mongolia University of Technology, Hohhot 010051,
China, and also with the Research Center of Large-Scale Energy Storage
Technologies, Ministry of Education of the People’s Republic of China,
Beijing 100816, China (e-mail: llxhappy@126.com; jxwan@imut.edu.cn).

Hong Lei is with the School of Cyberspace Security (School of
Cryptography), Hainan University, Haikou 570228, China, and also with the
Blockchain Research Group, Oxford-Hainan Blockchain Research Institute,
Chengmai 571924, China (e-mail: leiluono1@163.com).

Ning Tian is with the School of Engineering, University of Warwick, CV4
7AL Coventry, U.K., and also with the School of Computer Science and
Technology, Hainan University, Haikou 570228, China (e-mail: tianning410@
163.com).

Hao Lin is with the School of Computer Science and Engineering, Tianjin
University of Technology, Tianjin 300384, China (e-mail: suzukaze_aoba@
foxmail.com).

Digital Object Identifier 10.1109/JIOT.2023.3322716

Honest (PoH) to identify the espionage infiltrated into the botnet
to further promote the robustness. In addition, we discover and
propose a mechanism called collateral damage binding (CDB),
which proves that the botnet has it such as OICL is far more
robust than those who do not. Performance evaluations show
that OICL is effective, more cost-saving, and fast-responding
compared with the Bitcoin-based botnets as baselines.

Index Terms—Blockchain, botnet, cyber security, distributed
ledger technology (DLT), IoT.

I. INTRODUCTION

BOTNET, rendered as a relentless threat to the digital
world, is like a ghost that changes in form or shape but

never dissipates. Since the first Internet relay chatting (IRC)-
based botnet emerged in 1993, it has become a dangerous
threat that is difficult to detect and dismantle [1] from time
to time. The botnet is a network of compromised machines,
individually referred to as bots or zombies, and controlled
remotely by a malicious entity known as the Botmaster. For
decades, the most everlasting characteristic of the botnet is
its large scale, i.e., the number of victims can reach up to or
more than 10 000 [2], such as Srizbi [3], Shamoon [4], Kraken
[5], Zeus [6] [7], Retadup [8], [9], etc. Thereafter, added with
new features of specialization and fine-grained control, bot-
nets are evolving and tailored continuously to fit the advanced
persistent threat (APT) [10], a stealthy threat actor, typically
a nation-state or state-sponsored group, which gains unautho-
rized access to a computer network and remains undetected
for an extended period.

What is more, the wide use of IoT makes things worse
[11], [12]. Mirai [13], [14], an IoT-focused malware, by
exploiting a list of default usernames and passwords, which
most users never change, had been able to infect hundreds of
thousands of connected devices, from smart energy meters to
home CCTV cameras and connected baby monitors (after its
author identified and arrested, it soon crumbled). Although the
application scenarios and the technologies for implementing
botnets keep changing, the underlying command and con-
trol (C&C) structure, which is a channel of communication
maintained by the Botmaster to dispatch instructions toward
the compromised network [15], can be considered relatively
as a fixture. According to the topology of C&C structure,
botnets can be classified into three types: 1) centralized;
2) decentralized; and 3) hybrid [16].

1) Centralized Structure: From the perspective of topology,
destroying the centralized botnets is pretty easy since

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0410-2835
https://orcid.org/0000-0002-6564-1568
https://orcid.org/0000-0001-9304-0279
https://orcid.org/0000-0003-3236-3036

9108 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

once the main C&C server gets offline, the traffic of the
whole botnet will be locked.

2) Decentralized Structure: Compared with the centralized
botnets, decentralized ones, typically those adopting P2P
as a basic communication protocol, have more sturdi-
ness against tearing down because their C&Cs are more
or less distributed among all the participating nodes, in
other words, the bots per se can be considered as C&C.
Due to the fact that there is no central server to be the
coordinator to synchronize actions, in order to join and
keep pace with the swarm, a P2P bot needs to sustain
a list of its neighbors to stay connected with the bot-
net. This list is called the neighbor list (NL). Thus, the
dependence on NL is the Achilles’ Heel of decentralized
botnets. In addition, botnets of these kinds are nearly
impotent in finding the spying nodes accurately (techni-
cally, spying nodes are sensors/honeypots deployed by
security or government agencies to probe the intelli-
gence of the botnet). There are some mitigations that
aim the NL as the target for sabotaging the botnet. By
injecting spies into the botnet and collecting as much
intelligence of the botnet as possible, security agencies
can commit multiple attacking methods leveraging the
NL to undermine the decentralized botnet, such as NL
poisoning/polluting [17], sink-holing, and Sybil/eclipse
attacks [18], [19], [20].

3) Hybrid Structure: A botnet of this sort combines P2P and
centralized for the purpose of obtaining the benefits of
both, however, it typically suffers the weakness of both.

Apart from topology-oriented classification, we introduce
another taxonomy that divides botnets into two types depend-
ing on whether they rely on the underlying network: the
autarky botnet and the parasite botnet. Autarky means that
the entire botnet infrastructure is completely implemented by
its author, including designing the communication protocols,
constructing the C&C channels, and starting C&C servers and
domain names. Comparatively, the parasite botnet constructs
its C&C channel directly based on existing digital services
(typically public ones), such as Skype [21], social media [22],
and even a legal website [23]. We argue and prove that the
parasite botnet has more resilience than the autarky ones by
proposing a concept, the collateral damage binding (CDB),
to roughly quantify the extent of parasitism. In short, if the
security agencies desire to destroy the parasitic botnet, huge
collateral damages to the host will be entailed such as harming
benign users and disrupting normal transactions. Intuitively, to
destroy a botnet of this kind, the only available options are let-
ting security agencies detain the Botmaster hidden behind or
requiring the host to clear the botnet.

Conclusively, the essential countermeasures against botnets
can be generalized to: 1) destroying the bulk of it; 2) jamming
the network traffic of it; and 3) capturing the Botmaster who
owns it.

So, if a botnet is able to survive the three mitigations
above-mentioned and endure to exist, it can be considered
to have strong resilience. Apparently, the traditional central-
ized (varieties of DNS/Telnet botnet) and decentralized P2P)
botnet can hardly survive all three countermeasures. But the
emergence of Blockchain technology [interchangeable with

distributed ledger technology (DLT)] and the development
of IoT technology may shed light on the retaliation for the
three seemingly mighty mitigations since Blockchain offers a
strong autonomous working mode to protect its participants’
identity [24] and it has innate resistance against Single Point
of Failure (SPoF). And if properly designed, the pervasive
IoT devices can be leveraged to be botnet maintainers and
contribute a lot in keeping on the go of it. Thus, a couple
of cutting-edge researches attempt to harness the power of
Blockchain to enhance the botnet by synthesizing the botnet
with it to derive the capabilities to resist the mitigations afore-
mentioned. However, due to the fact that doing things on most
of the public blockchains can rarely be cost-effective, thereby,
deploying a hyper-scale botnet with these proposals is more
or less infeasible in practice.

In this article, we conduct a brief analysis of the main
drawbacks of both the traditional botnet and Blockchain-based
ones. And in the view of the attacker, based on our previous
researches [25], [26], we find that these disadvantages can be
eliminated and the resilience could be strengthened by IOCL,
a novel botnet infrastructure we propose. We finally discuss
probable mitigations against this new kind of botnet. The one
IOTA of countless legions (OICL) we propose has advantages.

1) Blockchain-Boosted: It leverages a new DLT implemen-
tation, the IOTA, to be its premises deriving all the
advantages that Blockchain has.

2) Cost-Saving and Low-Latency: The OICL overcomes the
main bottlenecks, namely, the cost and latency, that other
Blockchain-based botnets have.

3) Massive-Maintainers: With the aid of IOTA’s Tangle, it
recruits benign IoT devices as its maintainers.

4) NL-Eradication: It eliminates the dependence on NL that
traditional decentralized botnet suffers.

5) Versatility: It can be put into use for two typical scenar-
ios of a botnet, one-way communication for Distributed
Denial of Service (DDoS) and bidirectional communi-
cation for remote control.

6) Identification Friend or Foe (IFF): We integrate an
advanced IFF mechanism, the Proof of Honest (PoH),
with the OICL to accurately identify the espionage nodes
within the botnet.

7) Strong Resilience: The OICL binds the collateral damage
with the DLT as enforcement to promote its resilience.

The remaining sections of this article are organized as
follows. Section II presents a botnet chronicle to introduce
researches on the traditional botnet and some Blockchain-
based botnets are briefly discussed. In order to explain why we
utilize IOTA’s Tangle as the infrastructure of OICL, Section III
outlines some preliminaries of it to demonstrate its advantages
over other DLTs. Section IV presents the extensive model
design of OICL, including its communication protocols, C&C
premises, and a novel polygraph mechanism, the PoH, detect-
ing espionage inside the OICL and promoting the OICL’s
robustness. The effectiveness and performance of the OICL are
shown and evaluated through experiments in Section V. The
security analysis is discussed in Section VI. Section VII sheds
light on possible measures to further strengthen the OICL
and mitigations against it. Finally, Section VIII concludes this
article.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9109

Fig. 1. Chronicle of botnet.

TABLE I
TRADITIONAL BOTNETS AND THEIR FRAILTIES

II. LITERATURE REVIEW

A. Traditional Botnets—Now and Then

In retrospect, dating back to the 1990s, the pioneers of
botnet using IRC, which was envisioned in 1988 and was a
popular chatting tool among hackers at that time, as their C&C
channel, such as Sub7 and Pretty Park [27]. Their succes-
sor, GTBot [28], came into known in the year 2000 and was
the first to integrate DDoS ability into its design. In 2002,
Slapper, seen as the pathfinder of P2P decentralized botnet,
improved the robustness and efficiency of the P2P networking
capabilities of its ancestor’s, Apache Scalper [29]. And it was
wormable to infect more computers. The domain generation
algorithm (DGA) was leveraged by an infamous botnet, Srizbi,
spread among 450 000 computers, sited in 2007, to make it
difficult for law enforcement to effectively eliminate it. The
emergence of a botnet that aims IoT devices as its target
appeared in 2016, and its name was derived from a Japanese
word, Mirai (which means future) [13], accurately grasping the
trend of IoT and its weakness in security. Later, as a wormable
ransomware, WannaCry was spread across the world to extort
bitcoin from the victims by ciphering their files. Other records
of botnets and their protocol as well as their topologies and
channels are depicted in Fig. 1 as a chronicle.

All the entries in the chronicle are tagged as traditional
botnets, since “traditional botnet” means that their frailties
are obvious such that the identity of Botmaster is under lit-
tle protection, and in addition, their resilience is not strong
enough to resist destruction. What is more, they are not quali-
fied enough for all the hacking scenarios that require multiple
functions, such as confidential data stealing, file uploading,
spam, screenshot, video and audio recording, click fraud,
advertising, DDoS, remote control and access, and command
execution. According to their topologies, they can be classified
into two sorts: 1) centralized and 2) decentralized. Almost all
the DGA/DNS botnets are centralized and they are subject to

SPoF. Conversely, although P2P botnets can tolerate SPoF at a
certain degree since they are decentralized, the NL still made
it Achilles’ Heel since once the NL is poisoned, the nodes will
be at risk of losing contact with the Botmaster. The frailties
of the traditional botnet are concluded in Table I.

B. Blockchain-Based Botnets—The Pros and Cons

Although there are some emerging researches [30], [31],
[32], [33], [34], [35], [36], [37] on leveraging DLT to construct
certain components of the botnet, they are all subject to some
obvious flaws such like great cost, long latency in communi-
cation, and decreased performance on large file transmission
[25] and they are not full-function botnet framework in that
mutual communication channels are not all implemented [38].
However, these researchers do demonstrate the advantage of
utilizing DLT as the infrastructure of the botnet in that DLT
provides strong anonymity, anti-audit, and stealthiness, making
tracing the Botmaster behind these DLT-based botnets almost
intractable.

III. PRELIMINARY

We leverage IOTA’s Tangle1 to build OICL’s infrastructure.
Instead of a chain structure, IOTA’s Tangle uses a directed
acyclic graph (DAG) as the structure of its ledger. Compared
with other public DLTs, it has some peculiarities [40], [41]
listed below.

1) Highly Scalable: IOTA’s Tangle uses a DAG data struc-
ture allowing transactions to be added in parallel, unlike
those chain-structured DLTs.

2) Low Computational Resource Requirements: Designed
for IoT devices, such as sensors, to participate in a low-
energy network.

1After some updatings and patchings [39], IOTA has become more robust
than its earlier versions.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9110 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE II
COMPARISON OF IOTA’S TANGLE AND OTHER DLTS IN THE USE CASE OF BOTNET

3) Zero-Fee Transactions: Unlike other public DLTs,
IOTA’s Tangle has no transaction fees, no matter how
large the transaction is.

4) Fast Transaction Confirmation: IOTA transactions are
confirmed within seconds.

These advantages make IOTA’s Tangle an outstanding
groundwork for designing and instantiating our proposal.

Furthermore, IOTA’s Tangle has another unique trait that
all the other DLTs do not have, the Snapshot. A Snapshot
is done to prevent the Tangle from expanding too much in
size. Snapshotting saves all the balances while removing the
history and data, including messages, of all the transactions.
The address with balances will act like a new address, and no
previous history or data will be attached. Compared with other
DLTs, the difficulty of digital crime forensics in IOTA’s Tangle
is greater than it is in others since the botnet’s traffic will not
be stored permanently on the full node while unlike other
public DLTs such as Bitcoin and Ethereum, IOTA’s Tangle
doesn’t keep transaction data permanently. Thereby, it has a
stronger ability for anti-forensic than other public DLTs do
when applied in a botnet since the botnet’s traffic will not be
stored permanently on it. The features that are compared for
the scenario of applying botnet of the DLTs are rendered in
Table II. Although there is no evidence that a botnet using
EOS as its infrastructure was put into use neither in research
nor wild at the time of writing this article, we still compare it
with others for the sake of possibility. Due to the fact that the
participants who have sovereignty to mine new blocks in EOS
Blockchain are monopolized by 21 super nodes, the resistance
of SPoF in EOS is not as firm as in its contemporaries.

IV. SYSTEM DESIGN

A. Forgery of the Cornerstones of the OICL’s
Communication Protocol

The communication protocol for the construction of the
C&C of the OICL is mainly composed of three channels with
different privileges designed to preserve the security and pri-
vacy of OICL’s traffic. They are the bootstrap channel (BC),
the upstream channel (UC), and the specialty commands dis-
patch channel (SCDC). The basic communicating unit of the
three channels is a transaction (equivalent to a TCP packet in
TCP). The UC and BC are implemented by masked authen-
ticated messaging (MAM), whose fundamental constitution
is transactions as well, but customized ones. The SCDC is
built on raw transactions. By leveraging IOTA’s full nodes as
communication brokers, the OICL’s traffics are relayed, mak-
ing them difficult to trace. Thereby, when a transaction with

Fig. 2. Relationship between an OICL’s botnet transaction and other normal
transactions in a Bundle.

Fig. 3. OICL’s Bundle mixed with normal Bundles as a new tip in the DLT’s
DAG structure.

commands dispatched by a Botmaster is received by a bot, it
has been relayed and propagated by the whole DLT’s network.

1) Transaction: Initially, some relevant elements of the
transaction need to be tweaked for the OICL’s protocol. In
OICL, the elements of a transaction we use are: the Addresses
of transaction’s sender and recipient, Value to send, Tag and
BundleHash of the transaction, the Index of the transaction
in the Bundle,2 Nonce used for DDoS protection, Message
used for sending user-defined data, and the Trunk and Branch
parameters referencing to those transactions in another two
bundles in the Tangle [42]. Among these elements, the Tag
and Message parameters are requisitioned for OICL’s commu-
nication protocol. Fig. 2 depicts the components of an OICL’s
transaction and its relationship with other normal transactions
in a Bundle is depicted in Fig. 2

As Fig. 2 shows, our OICL’s transaction is packed with
other normal transactions altogether into a Bundle. The Bundle
that carries OICL’s traffic is sent to the full nodes of the DLT
and blended with other normal Bundles, as shown in Fig. 3.

As Fig. 3 shows, the orange Bundle that has OICL’s trans-
actions is sent and joined with other normal Bundles in IOTA’s
Tangle, forming a DAG structure.

2) Masked Authenticated Massaging: Among these ele-
ments, Message is used to implement the MAM, which is
the infrastructure of the BC and UC channels. In OICL,

2A Bundle in IOTA is equivalent to a block in other public DLTs.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9111

Fig. 4. Chain structure and components of the public MAM.

Fig. 5. Chain structure and components of the private MAM.

there are two roles for MAM. One is the owner, as the data
publisher, and the viewer, who subscribes to the owner via
MAM. Thereby, MAM works like a one-way tunnel where
the owner puts data into it on one side and subscribers receive
them on the other side of it. This ownership is implemented
and secured by the Seed [43], which can be, for simplicity,
considered as private keys. Only the Seed’s owner can publish
data to the channel.

In OICL, the MAM has two privileges.
1) Public: Everyone who has the channel root which is the

same as the first address to the message chain attached
to can view the content within, and the masked message
is decrypted using root. The chain structure and details
of public MAM are shown in Fig. 4.

2) Private: Only the Seed owner can access, and the
masked message is decrypted using root. MAM’s
address on Tangle is the hash of the root, thus mak-
ing it impossible to decrypt the masked messages since
there is no feasible way to derive the root from its hash.
Thus, the secrecy of messages is guaranteed provided
that the Seed is held confidential. The chain structure
and details of private MAM are shown in Fig. 5.

The parameter, root (or the hash of the root), which works
as a message identifier, is given to viewers so as to find mes-
sages from Tangle. Although MAM works like a tunnel or
chatting room, its basics are still transactions. As a common
sense on DLT, once an address sends a transaction, it becomes
public and everyone is able to query its history of activity on
the chain. As a result, if the adversary keeps an eye on a
certain address, he can obtain those patterns that compromise
the stealth of the botnet. For example, if an entity in our bot-
net wants to post data every 15 min, without MAM, it has
to post every message to the same address. Because any dis-
tributed ledger including the Tangle is publicly accessible, it
is easy for adversaries to identify such an address that updates
every 15 min. Fortunately, MAM posts messages to different
addresses with verbose information connecting them, forming
a message chain. As seen from Figs. 4 and 5, on the message

Fig. 6. OICL’s MAM payload and its main components.

chain, from one generation to the next generation, the older
message always leads to newer ones, namely, the predecessor
and successor in the MAM. The Message parameter of a trans-
action is redefined as signature message fragment (SMF) and
used as a MAM’s payload, whose constitutions are depicted in
Fig. 6. Seen from Figs. 4 and 5, the message and other parts
are ciphered by Root or Sidekey, depending on what privilege
the MAM owner adopts.

As Fig. 6 shows, after all these widgets of SMF are set, the
transaction that has the MAM’s payload will be treated as a
normal transaction and propagated to the DLT’s network.

B. Network Topology and the Communication Protocol of
the OICL

The most important component of a botnet is its C&C. Our
proposed OICL’s communication C&C combines the advan-
tages of existing DNS botnets and P2P botnets and eliminates
their drawbacks. Contrary to the ordinary DNS botnets, in our
system bots do not need to contact any controlling server. In
addition, unlike the P2P botnet that needs to maintain an NL,
in our architecture, participants connecting to full nodes (typ-
ically IoT gateways), are independent of each other such that
one is unaware of the existence of its neighbors.

1) Overview: The overview of the topology of our proposal
is depicted in Fig. 7. Bots in our system communicate indi-
rectly with Botmaster via either Hornet [44] node or Bee [45]
node (which are called the full nodes) that usually runs on IoT
gateways that communicate via the Gossip protocol. Also, as
shown in Fig. 7 there are many IoT devices and other applica-
tions like wallets connecting to the full nodes via the Tangle’s
communication API.

The set of dedicated channels shown in Table III is designed
for robust and fully functional communications between bots
and Botmaster with different privileges. The public BC can
be only used by Botmaster to broadcast launching instructions
(LIs) to each node, including those belonging to the attacker,
with full node information and basic commands. After receiv-
ing the LI, a connection is established between the bot and

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9112 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE III
THREE CHANNELS OF THE OICL AND THEIR TRAITS

Fig. 7. Topology of OICL.

Fig. 8. Three channels of OICL’s C&C.

a selected full node. Thereafter, the bot and Botmaster can
exchange data through the private UC and SCDC. All channels
are under the protection of CDB. In contrast, spam protection
(SP) is only applied to BC since UC and SCDC are not visi-
ble to the adversary, thus making them unable to be DDoSed.
Logically, all channels in Fig. 8 connect Botmaster with bots
directly, whereas in practice these channels constitute many
intermediate full nodes helping relay traffic.

Fig. 9 depicts the OICL communication protocol composed
of four stages. Note that the stage before the Bootstrap at the
top of Fig. 9 initiates at the beginning of the whole protocol,

Fig. 9. OICL communication protocol.

indicating that the id of BC is derived in this stage. The BC in
this stage will be empty until stage 1 brings LI in. First, in the
bootstrap stage, Botmaster initiates a channel identified by a
channel ID (hardcoded in the binary execution file in advance
for infecting a computer and then turning it into a bot), namely,
the BC, with LI putting in. LI has the full node information
and basic commands. The full node information consists of
the IP address and port number of the full nodes selected
by Algorithm 1, And basic commands consist of requiring a
description of the bot’s CPU details, and those actions that do
not need feedback such as DDoS. LI is sent to a full node to
be packed in a transaction and propagated to other full nodes.
After receiving the LI, the full node Botmaster connected to
pack the LI into a valid MAM transaction, which was attached
with a timestamp and a transaction hash, and broadcast it to
all other full nodes on the Internet through Gossip protocol.
This is the process of constructing the BC, the bootstrap stage.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9113

Then, in the second stage, bots create and record MAM
channels by IDs for uploading data back. The MAM channel
is used for UC in stage 4, with the channel ID as its identifier.
(The MAM was created by the bots, not Botmaster. Do not
confound it with BC’s ID in stage 1.) Once the bots that listen
to the BC channel have obtained the LI, they will send their
CPU information, public address, seed, and UC channel ID
back to the Botmaster, in the form of cyphered transactions
with the full node it connecting to as the transaction’s tag.
The encryption key used to cipher the feedback is Botmaster’s
public key, which is hardcoded in the binary execution, guar-
anteeing that bots cannot decipher each other’s data. This stage
is called “phoning home.”

In the third stage, Botmaster will search the phoning home
information that bots have sent in stage 2 with the full nodes’
name as a tag, decrypt them with his private key, and then store
the UC’s information locally. Thereafter, he uses the hash of
the bot’s seed as a transaction tag to dispatch commands and
verifiable delay function (VDF) rounds (which is PoH related,
the next section introduces its detail) required to execute on
the bot, and listens to the UC to receive data and execution
results of the commands as well as VDF proofs. These com-
mands are particular to the bots that need to transmit data
back, such as those sending screenshots or files back, list-
ing file directories, VDF proofs, and so on. As an optional
optimization, Botmaster can distribute commands to the target
bot by sending transactions with data ciphered by the bot’s
seed.

In the final stage, bots put their data and execution results
of commands derived from the Botmaster in the UC at the last
stage with the VDF proof. Then, the Botmaster listens on the
other side of the UC can obtain data and use the VDF proof
to check whether the bot is honest or not.

2) BC Generating Algorithm: The BC generating algo-
rithm listed in Algorithm 1 constructs a BC through which
the set of full nodes can be connected by bots.

This algorithm applies to the first step for a new recruit
bot to connect to the botnet. The BC is incorruptible and
immune to spam attacks provided that the ownership of the
MAM’s seed is under the control of Botmaster. The BC
is also sheltered by CDB as shown in Table III. In other
words, it is highly trustworthy for disseminating LIs issued by
Botmaster.

As Algorithm 1 shows, in fact, a full node enumerator
begins with a node’s neighboring nodes (this node is hard-
coded in the binary executions), puts them into the channel,
then enumerates their neighbors and their neighbors’ neigh-
bors, and repeats this process to find as many full nodes as
it can. Although CDB protects the full nodes from being shut
down or handed over to the adversary, we still believe that
the increasing storage of full nodes’ information can make
the OICL strong if in the worst case that some full nodes get
offline somehow. Another reason why Algorithm 1 enumer-
ates as many full nodes as possible is that the more full nodes
the OICL gets, the more CDB it binds to. The bots of OICL
can connect to these full nodes with no hindrance. One of the
simple ways to destroy the botnet is to take down these full
nodes that Algorithm 1 obtains and the more full nodes get
offline, the more damage the DLT sustains.

Algorithm 1 Constructing of the BC
Input:

1: portal: The bootstrap server of IOTA’s Tangle;
2: publickKey: The public key of Botmaster;
3: channelID: Used for publishing full nodes IP addresses;

This is a MAM channel created by Botmaster in advance
(Before Bootstrap). The channelID is hardcoded in the
binary execution;

4: Node: An instance of a full node in Tangle;
5: interval: The original time duration for proof of honest.

Technically, it is VDF rounds.
6: command: The initial commands that Botmaster dis-

patched to bots, including those commands requiring no
feedback such as executing DDoS task or mail spam;

Output:
7: fullNodes[]: The list of neighboring full nodes;
8: Initialize portal to a IOTA’s Full node;
9: iota = connect(portal)// Connect to the portal then obtain

a connection instance iota
10: Use the instance Iota to get the full node’s neighboring

full node sneighbor Address = Iota.getNeighbors()
11: while TRUE do
12: // Connect to the portal then obtain a connection

instance iota
13: for I in neighbor Address[] do
14: connect to I to obtain a connection instances node

← connect(i)
15: Broadcast full node’s information, DDoS/basic com-

mands, and VDF time interval into the chan-
nel Iota.publishToChannel(channelID,node, interval,
command)

16: Add this full node to output fullNodes[]
17: end for
18: Empty the neighbor Address set.
19: Find neighbor’s neighboring nodes
20: for j in fullNodes do
21: Add j’s neighbors into neighbor Address
22: end for
23: Remove all the duplicated elements;
24: end while

3) UC Algorithm and Bot’s Phoning Home: After
bootstrapping, a bot will connect to one of the full nodes
derived in BC, and those bots applied for DDoS or mail spam
are ready to begin their sortie. So, the BC alone is enough
for these bots. However, those who need to upload data must
find a way to transfer it back to Botmaster, and they can do
this by sending a transaction that contains the seed as its
identifier as well as the ChannelID to use the channel. Then
all the stuff is encrypted by the public key of the Botmaster,
making these transactions mutually confidential among bots.
So, if a bot falls into the adversary’s hands, the data sent by
other bots in transactions will be unreadable to the adversary.

Through searching specific transactions with full nodes’
names as tags (IOTA’s Tangle has provided a set of APIs to
filter and find transactions with parameters of a transaction as
searching keys, such as addresses and tags), the Botmaster can

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9114 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Algorithm 2 Phoning Home and UC Construction
Input:

1: publickKey: The public key of Botmaster; it is hardcoded
in the binary execution;

2: channelKey: The encryption key of the channel that makes
the channel private and encrypted. It can be derived from
the seed’s hash;

3: Privilege: The privilege of the Channel will be private
here;

4: seed: The seed of the bot, used to generate MAM Channel
and Address;

5: Address: The address of the bot on Tangle, generated by
6: seed:;
7: CPUinfo: The processor information of the bot;

Output:
8: channelID: The ID of the private channel on Tangle used

byBotmaster to receive data uploaded by a bot;
9: content: The content of transactions constituted by seed,

Address,channelID, CPUinfo, and publicKey;
10: channelKey: used as encryption key for private channel;
11: tag: the tag of transactions sent by the bot to inform the

Botmaster about its existence. It can be used by Botmaster
as a filter to search specific transactions. Therefore, it must
be known to Botmaster in advance like the names of the
full nodes put into the BC;

12: Initialize:
the tag tag as the name of the full node it connecting to

13: Obtain the full node’s name that the bot is connecting to
FullNodeName:= GetNodeName() ;

14: Use the name as the tag of the transaction tag :=
FullNodeName

15: Set the privilege of the channel to private Privilege:=
private

16: Get the hash of the bot’s seed, then use it to encrypt the
channel in the next step channelKey:= Hash(seed)

17: Create the encrypted channel, then get the id as
the identifier of the channelchannelID:= MAMCreate
(seed,privilege,channelKey)

18: Encrypt the bot’s seed, address, channelID
and CPUinfo as the content for the phoning
home transaction with Botmaster’s public key
hardcoded in binary execution content :=
encrypt(seed,Address,channelID,CPUinfo,publicKey)

19: Pack the content into a transaction then send it to
a full node with which the bot is interacting. And
the address that the transaction was sent to matters
not since Botmaster only needs the tag to find the
transaction.transaction := MakeTransaction(tag,content)

20: SendTransaction(transaction)

obtain the reverse-connecting bot’s seed and address readily
and decrypt them as well as the CPUInfo (in cipher) that they
sent back with his private key.

In addition, when a bot needs to upload big files or huge
amounts of data, the MAM that the UC leveraged is not
qualified for the task as MAM is designed for message

queuing telemetry transport (MQTT), not for big file transmis-
sion. Thus, we introduce the decentralized storage solution,
such as Swarm [46] or IPFS [47] as an enhancement for
big file uploading. Designed to be versatile, the OICL inte-
grates the Swarm as a big file-uploading enhancement since
Swarm has a stronger anti-censorship stance than IPFS does.
It incentivizes content-agnostic collective storage (block prop-
agation/distribution scheme), implementing plausible deniabil-
ity with implausible accountability through a combination of
obfuscation and double masking.

On Swarm, each file uploaded will generate a hash as its
identifier. A bot merely needs to send the Swarm hash to
Botmaster via UC instead of directly putting the big file into
it. After the enhancement, compared with other DLT-based
botnet implementations like [30] and [31], OICL has a greater
ability to accelerate the speed of big file uploading.

4) Specialty Commands Dispatch Channel: After the
upstream conduits are accomplished, Bots that have digi-
tal assets raiding tasks are ready to receive peculiar orders
assigned by Botmaster, such as confidential theft, screenshots,
audio/video recording, file uploading, ransom, etc. Given the
seeds and addresses of the bots and details of the complete
nodes they are connected to, Botmaster is able to assign com-
mands via transactions tagged with this information. Callbacks
can be registered by bots to subscribe to these tagged transac-
tions by bots to follow Botmaster’s further instructions. Due
to the fact that the seeds are ciphered by the public key
of Botmaster in stage 2, the adversary is not authorized to
decrypt these ciphers, thus securing the privacy of the bot’s
data. Consequently, these tagged transactions can be consid-
ered invisible to the adversary. The SCDC is quarantined from
corruption by the adversary. The flow of achieving this channel
is illustrated by Algorithm 3.

As Algorithm 3 demonstrated, the commands within the
dispatching transaction are encrypted with the bot’s seed as
the symmetric encryption key, since the seed is only accessi-
ble to the bot itself and Botmaster, the content in SCDC will
remain confidential. Besides, in order to receive data uploaded
by bots, Botmaster listens to the UC in Algorithm 2 marked
with channelID and channel Key derived in stage 2. Bots can
simply use their seed’s hashes as tags to find SCDC transac-
tions and decrypt them with their seed as key while protecting
it from compromising secrecy.

C. Proof of Honest

PoH is a novel scheme we propose to check whether a bot
is controlled by the adversary and promote the robustness of
OICL. Its processes are depicted in Fig. 10. In order to hijack
a device to become a bot, the Botmaster will first need to
deliver the bot’s payloads to the target. Depending on whether
the target device is controlled by the adversary, after becoming
a bot, the target can be defined as follows.

1) Honeypots and Sensors: The targets may be controlled
by the adversary who waits to analyze the botnet’s traffic
by letting them be hijacked on purpose. These trap-
like targets are called honeypots or sensors. Sensors
are spy nodes that collect all available intelligence,

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9115

Algorithm 3 Constructing of the SCDC
Input:

1: Privatekey: owned by Botmaster used to decrypt data sent
back by bots;

2: commands:a set of orders Botmaster needs to sendtobots;
3: vdfrounds: The round parameter of VDF’s eval function,

pre-selected by Botmaster;
4: FullNodeNames: The name of full node obtained in algo-

rithm 1, used as searching key to obtain bot’s phoning
home transactions;

5: Address:bot’s address on Tangle, has been sent back in
stage 2;

6: tag: search key of SCDC transaction used by bot to find
Botmaster’s commands. And it can be derived by the hash
of the seed of the bot;

7: data: data of the transactions sent by the targeted bot in
phoning home, including CPU information, bot’s seed and
address, as well as id of UC;

Output:
8: seed: bot’s seed sent back in its phoning home transaction;
9: address: bot’s address sent back in its phoning home

transaction;
10: channelKey: The encryption key of the UC that makes

the channel private. It is obtained by Botmaster in the
phoning home stage. The bot can use its seed as the UC’s
encryption key;

11: channelID: The ID of UCof the bot used for sending data
back to Botmaster;

12: Initialize:
tag_n for n ∈ {1, 2, . . . , n} in FullNodeNames

13: The phoning home transaction was tagged with the full
node name of the bot. Find it with withFullNodeNameas
search key transaction := findTransaction(tagn)

14: Get contentfrom the transaction then decrypt it with
Botmaster’s privte key data := getAndDecryptContentOf-
Transaction(transaction,privatekey);

15: Obtain the seed of the bot from data and hash it to get the
UC encryption key seed := getSeed(data), channelKey :=
Hash(seed)

16: Find the UC’s id in data channelID := getChannelID(data)

17: Listen to the UC channel to wait for the bot to
send data (VDF proof and time consumed, files,
results of command executions, and others) back
MAMListen(channelID,channelKey)

18: Get the bot’s address on Tangle and its CPU data Address
:= getAddress(address),CPUInfo := getCPUInfo(data)

19: Encrypt and pack the commands and VDF rounds with the
bot’s seed into a transaction, and send it to the targeted bot.
And the address that the transaction was sent to matters
not since the bot only needs the tag to find the transaction.

based on which the botnet can be subverted via various
approaches such as executing sinkholing attacks, and NL
poisoning [48]. They infiltrate and monitor the botnet by
camouflaging themselves as benign bots except for some

Fig. 10. Working flow of PoH.

hostile characteristics, such as a) sensors do not execute
any Botmaster’s commands; b) most sensors block all
outbound botnet traffic; and c) some smart sensors send
falsified or trash data back to Botmaster for protecting
themselves from exposure. Based on the fact that the
adversaries such as law enforcement officials are bound
by legal, ethical, and technical constraints such that sen-
sors dispatched should not participate in any action nor
send any data as digital trophies back to the Botmaster,
thus a)–c) can be conducted.

2) Nexuses: In view of network topology, there is a situ-
ation in which a large number of bots connect to the
botnet via a single full node of the DLT. In this case,
the full node with a great many bots connecting to is
called the nexus node for OICL. Although the collateral
damage to the DLT will be great if the adversary decides
to shut down these nexuses, all the bots connecting to it

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9116 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

will lose contact with the botnet. As a countermeasure,
we propose a novel scheme called PoH. PoH can: a) dis-
cern whether a bot is in a sensor or honeypot deployed
by the adversary for intelligence probing and b) disperse
the bots across the full nodes obtained by Algorithm 1,
lest they all converge to a single full node of the DLT.
In brief, PoH is a polygraph mechanism that separates
sensors/honeypots from normal bots thus promoting the
robustness of the botnet.

1) Honeypot and Sensor Detecting: It is a challenge
for Botmaster to identify sensors and honeypots. Previous
approach [48] leveraged the difference of the clustering coef-
ficient (CC) for the NL between bots and sensors/honeypots.
However, in OICL, due to the elimination of the NL, all the
detecting plans depending on the NL fail. Conclusively, we
argue and believe that rather than designing a complicated
detecting scheme based on graph theory or a reputation system
to assess the loyalty of a bot, grasping the very essential dis-
crepancy between bots and sensors/honeypots is the key to
distinguishing them. The discrepancy is that the sensors and
honeypots do not participate in botnet activity or send truth-
ful and credible information back to Botmaster. Thereby, the
difficulty now shifts to how to identify if the data sent back is
treacherous. We propose a honeypot detecting scheme to judge
whether the basic information (CPUInfo) sent back is true or
not. Based on the fact that different CPUs have different com-
putation powers, we leverage the verifiable computing issue
in the VDF [49], [50] to confirm the validity of the CPUInfo
sent by a bot.

The VDF is an important tool used for adding delay
in decentralized applications. A VDF satisfies three proper-
ties, which are prescribed evaluation time, sequentiality, and
uniqueness [51] such that a credible timer can use VDF as its
cornerstone. Basically, it is a function f : t→ proof that takes
a prescribed time to compute, even on a parallel computer.
However, once computed, the output can be quickly verified by
anyone. Moreover, every input x must have a unique valid out-
put y. Among two existing VDF algorithms [52], [53] and their
implementation [54], we evaluated both to figure out which
one is more appropriate for our scheme. Through comparing
the two implementations, in a range of 0 to 500 000 of the
time round t, we found that the larger t is, the bigger the size
of the proof will be in [53] (linearly increased), whereas in
[52], the size of the VDF proof is a constant value.

This indicates that [52] is more space and bandwidth-saving,
thus making it our adoption. In OICL, the simplified flow of
the polygraph is as follows.

1) VDF_eval(t)→ (proof) takes time rounds t (designated
by the Botmaster) and outputs a proof.

2) VDF_verify(proof,t) → {True,False} outputs True if
proof is the correct evaluation of t.

The prover, namely, the bot proving its loyalty to the
Botmaster, is required to execute VDF_eval(t), and then pro-
vide its output y as time proof for the verifier, the Botmaster,
to check out whether it is valid or not (parameter t is con-
signed by Botmaster, and can be adjusted). Another vital strait
of VDF is that the time entailed to solve the puzzle varies
in different CPU types since different CPUs have different

computing power. Consequently, Botmaster can demand the
details of a bot’s processor when its upload channel is set up.
Then via comparing the elapsed time the bot provided with
that it should have consumed for its alleged specific CPU type,
Botmaster can adjudicate if a bot is a perfidious node or not.

By leveraging the verifiable computing issue of VDF, based
on the fact that the time consumed in executing VDF_eval()
on different CPUs varies, through experiments, a dictionary
for polygraph is provided.

After receiving the elapsed time spent for executing the
VDF_eval for specific rounds from a bot, By querying the
polygraph dictionary Table IV, the Botmaster is able to find
out whether the CPUInfo in Algorithm 2 is true or not. For
example, assuming that a bot, as a prover, claims that its CPU
type is “Intel Core i7-9700” in the phoning home stage. Then,
the Botmaster designates t as the VDF_eval rounds, sends it
to the bot, and waits for the response, which is composed of
a VDF proof for VDF_verify and a time parameter that the
bot has spent in executing the VDF_eval. Using the CPU type
and VDF round parameter t to query the polygraph dictionary,
then by comparing the time sent back with the predetermined
time in the dictionary, the Botmaster can tell if the bot lies to
him. In addition, the Botmaster can use t as a timer for heart-
beat detection. In brief, the Honeypot and Sensor Detecting
scheme interrogates bots on three trials.

1) Send heartbeat message back to the Botmaster or
considered to be an adversary’s sensor.

2) Send valid VDF proofs to Botmaster or convicted of
espionage.

3) Prove that their CPU information sent back is not forged
according to the time of rounds consumed by running
VDF or condemned to be a spy.

Conclusively, either the proof or its CPU information was
phony or the bot simply provisions nothing, then it would
be regarded as a treacherous node serving the adversary with
high possibility. A bot may try to send messages back but
keep losing its data packets in poor network conditions when
it is interacting with Botmaster, performing very much like
a sensor. In this scenario, giving it specific commands is
unnecessary as it merely is a waste of Botmaster’s network
resources. Thus, these kinds of nodes can be seen as sensors
in the view of Botmaster. Then abrogation of listening to their
uploading channel and allotting them no further orders are
reasonable measures.

2) Bots Dispersing: An excess of bots crowded on a single
full node undermines the robustness of the botnet since the
adversary can sever them off the botnet by simply snuffing out
the full nodes. In this situation, Although switching to another
full node is always allowed, the perturbation of bots’ losing
contact is unavoidable. Thus, we provide a scheme based on
verifiable random function (VRF) [55] to make bots evenly
distributed to all the full nodes enumerated by Algorithm 1.
In OICL, the simplified flow of the scheme is as follows.

1) VRF_proof(skbot,t)→ (rn,pvrf) takes an input t (des-
ignated by the Botmaster) and bot’s private key, and
outputs a random number rn and proof pvrf.

2) VRF_verify(rn,pvrf) → {true,false} outputs true if rn
and pvrf is the correct evaluation of the VRF on input t.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9117

TABLE IV
POLYGRAPH DICTIONARY

The prover, namely, the bot, is required to execute VRF_-
proof, and then use its output rn and pvrf to randomly pick a
full node i obtained by Algorithm 1 and connect to it to require
the basic information fni of the full node. To be specific, fni is
a tuple of multiple elements that provide the current status of
the full node, such as its clock time, the number of transactions
it processed, the number of its neighbors, its version, and its
IP address. Once the bot has connected to the full node and
fni is obtained, it sends them to the Botmaster. As a verifier,
the Botmaster checks out whether they are valid or not by:

1) use VRF_verify to check whether pvrf and rn are valid;
2) connect to the full node i that the bot selected and obtain

its information fn′i;
3) check out if fni is equal to fn′i.
After integrated with Honeypot & Sensor Detecting and

Bots Dispersing, PoH operates as follows:
The whole progress of PoH spans stage 2 to stage 4 of

the OICL protocol. First, the bot that serves as the prover
sends its seed as a unique identification to Botmaster. Then
after receiving the seed, the Botmaster chooses the time-round
parameter t, and sends it to the bot. The bot uses it to exe-
cute 1) the VDF evaluation to obtain the VDF proof pvdf, and
records the time consumed tc in evaluating and 2) the VRF
evaluation to generate a random number rn and a VRF proof
pvrf that proves the number obtained is really randomly gen-
erated. Then, the bot uses rn to randomly choose a full node
i enumerated by Algorithm 1 to connect to and obtain the full
node’s information fni. When pvdf, tc, pvrf, rn, fni is success-
fully obtained, the bot sends them back to the Botmaster to
prove its loyalty. The Botmaster then launches the PoH check,
taking these arguments to scrutinize the bot’s faithfulness.
Thereby, the PoH can be utilized to implement a heartbeat
test that requires bots to send responses back at intervals to
prove their liveness and loyalty to Botmaster. There are four
criteria to condemn the bot to commit espionage.

1) pvdf or pvrf is not validating.
2) The bot sends nothing back.
3) The evaluating time parameter tc does not match the

time of the bot’s CPU type.
4) fni does not match the Botmaster’s fn′i.
In the progress of uploading data via UC in stage 4 of Fig. 9,

bots are required to send PoH proofs and time as heartbeat
packets at regular intervals, which can be adjusted dynamically
on Botmaster’s will. The purposes of this time-based heartbeat
testing component are as follows.

1) To examine the bots if they do as the Botmaster demands
faithfully.

2) To adjudicate those bots that misstate their computing
power as espionage.

Algorithm 4 PoH Proofs Generation
Input:

1: channelKey: The encryption key of the channel that makes
the channel private. It is derived from the seed’s hash;

2: channelID: The ID of the UC used for sending data back
to the Botmaster;

3: data: The data bot needs to upload;
4: t: The time parameter t designated by the Botmaster for

the execution of VDF_eval() and VRF_proof();
5: tc: The time duration consumed by bots executing eval

function of VDF, varying in CPU types;
6: command: orders received from Botmaster via algo-

rithm 4;
Output:

7: pvdf : VDF’s time proof;
8: data The results of the commands execution;
9: proofs: A tuple of encrypted elements including proofs

of VRF and VDF and the result of the execution of the
commands;

10: Initialize:
11: Execute the VDF_eval with required rounds (pvdf ,tc) :=

VDF_eval(t);
12: Execute the VRF_proof with t and the bot’s private key

skbot (pvrf ,rn) := VRF_proof(skbot,t)
13: Use rn to select a full node to connect to fni :=

connectAndGetInformation(rn);
14: Encrypt the pvdf , tc, pvrf , rn and fni with

bot’s seed, obtain the proofs proofs :=
encrypted(pvdf ,data,tc,pvrf ,rn,fni,channelKey)

15: Put the proofs into the UC channel publishToChan-
nel(channelID,proofs)

3) To give Botmaster some leeway to save bandwidth and
computing resources when many bots attempt to send
data simultaneously back and further elevate the defense
against potential spams.

The PoH scheme requires a prover, in the context, a bot,
and a verifier (the Botmaster), to cooperate in the process
that a prescribed time interval designated and delivered by
the Botmaster to bots via the BC. After receiving the PoH
proofs, he can check them to verify if the bot is faithful or not.
Algorithm 4 is used by the bot to prove itself to be trustwor-
thy and Algorithm 5 is for Botmaster’s use in a prosecutor’s
manner.

Bots in the OICL run Algorithm 4 to generate the PoH
proofs to be verified, and connect to a selected full node of the
DLT. When the Botmaster receives the PoH proofs through our

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9118 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Algorithm 5 PoH Proof Checkout
Input:
1: privateKey: The private key of Botmaster;
2: channelKey: The encryption key of the channel that makes the channel

private. It can be derived from bot’s seed, received in Algorithm 2;
3: channelID: The ID of the UC of the bot, received in Algorithm 2;
4: tc: The Executing time of VDF_eval() Rounds t that bots send back);
5: CPUInfo: The information of the processor of the bot’s. This was received

in a transaction assembled in Algorithm 2 issued by the bot with seed
and address of the it when it phones home;

6: CPUList: This is a database recording a bunch of types of processors.
The entry of it is the time interval that a specific CPU needs to take to
solve the time puzzle (t rounds) of VDF_eval();

7: comprativeTimeDuration this value is known by Botmaster in advance,
derived by searching in CPUList with CPUInfo as the key;

Output:
8: proofs: encrypted PoH proofs bot sent back, including the result of the

command execution;
9: decision: a Boolean value (true or false) derived from the proof check

adjudicates whether the bot has executed the PoH faithfully. “True” repre-
sents that the prover is an actual bot, while “false” means that the prover
is unreliable;

10: Initialize:
11: Get data from the bot’s UC data = ucdata := listenToUCChan-

nel(channelID, channelKey)
12: Unpack the data and obtain proofs, the result of command execution

and time interval of executing VDF_eval. (pvdf ,data,tc,pvrf ,rn,fni) :=
getProofAndInterval(ucdata)

13: Check whether the pvdf is validate or not decision := VDF_-
verify(pvdf ,t);

14: if decision == True then
15: Check whether the pvrf and rn are validate or not decision := VRF_-

verify(pvrf ,rn);
16: end if
17: if decision == True then
18: Check whether the fni is validate or not fn′i :=

connectAndGetInformation(rn); decision := fn′i == fni
19: end if
20: if decision == True then
21: if the proof passes the checkout, then further check whether its CPU

type complies with the table’s entry possessed by Botmastercpuinfo
:= getCPUInfo(data)

22: compares the VDF execution time committed by this type of CPU, in
order to find out if the bot had sent fake CPU information. If so, it is
considered to be espionaget′c := CPUList .find(CPUInfo, t) decision
:= t′c == tc

23: end if
24: if decision == True then
25: The bot is an actual bot. The Botmaster can communicate with it

without fear.
26: else
27: The bot is treacherous, disconnect from its UC and send no more

commands to it via SCDC lest it collects further intelligence from the
botnet Disconnect(channelID,channelKey)

28: end if

designed communication protocol, he launches Algorithm 5 to
verify the proofs, assessing the loyalty of the bot.

V. EFFICACY AND PERFORMANCE EVALUATION

In this section, the efficacy and performance of our botnet
design are evaluated and proved via experiments and discus-
sion. Researches like [30], [31], [34], [36], and [56] are the
most representative since they are all Bitcoin based botnets,
and thus, we use them as baselines in this section.

A. Efficacy of Full Node Enumeration

First, the effectiveness of Algorithm 1, namely, the BC, was
examined, and part of the full nodes enumerated is listed in

TABLE V
FULL NODES ENUMERATED BY ALGORITHM 1

Table V. Most of these nodes are maintained by blockchain
communities, foundations, and enterprises, constituting the
backbone of the DLT and its applications. Thus, they are resi-
dents online and under heavy protection in that it is difficult to
bring them down. Due to the fact that the more nodes obtained,
the more robust our proposal is (because we can switch to
other nodes to resume the OICL if the one we currently con-
nect to is down), Algorithm 1 discovers as many nodes as
possible. The entries listed in Table V provide the efficacy
of the algorithm. As Table V shows, when we discover these
nodes, some additional information is also obtained such as
the port number used, the node’s version, whether remote PoW
is needed or not, SSL support, and the neighboring number of
the node.

B. Response Time Comparison of OICL and the Baseline

To construct a large-scale botnet, the response time is the
headfirst factor affecting the communication of the Botnet in
the way of response time. Hereby, to examine the response
time of our proposal, we distributed our bots to different con-
tinents, which are Europe, Southeast Asia, and North America,
and put Botmaster to these places to test the latency between
them, respectively (and pinned the location of the full node
to Germany, because most of the full nodes of the DLT are
in Europe). We define a bot’s response time as the time
period from when the Botmaster issues an instruction and it
is successfully received by the bot over the DLT’s network.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9119

TABLE VI
EXPERIMENT RESULTS OF A BOT’S FETCHING INSTRUCTIONS AND THE GEOGRAPHICAL LOCATIONS OF THE BOT AND THE FULL NODE

TABLE VII
EXPERIMENT RESULTS OF THE BOTMASTER’S PUBLISHING INSTRUCTIONS AND THE GEOGRAPHICAL LOCATIONS OF THE BOT AND THE FULL NODE

Fig. 11. Latency for data fetching and publishing on three locations.

The detail of the parameters of the experiment is listed in
Tables VI and VII, and the result is depicted in Fig. 15.

The whole set of experiments is divided into two groups.
In the first group, we measured the time period from the time
when Botmaster issued a command to it being successfully
published on Tangle (meaning that bots can obtain it) in three
locations, respectively. The latency of the bot’s fetching com-
mands is also examined in these three places in the second
group and each test within the two groups listed in the table
was committed 100 times. The response time, referring to how
fast commands or data can be brought from Botmaster to the
bot (and vice versa), of three locations are rendered in Fig. 11
by its horizontal and vertical axis.

In Fig. 11, since the full node’s location is constant
(Germany), it stays on the right side of the three arrows in the
cutline upper left of the figure. The positions of the Botmaster
and bots are volatile, whose value ranges are U.S., Singapore,
and Germany. So, they are arrayed on the left side of the three
arrows in the cutline.

As we can see from Figs. 11 and 12, the latency is the short-
est when both Botmaster and bots are in Germany, in which the
full node was located. And it is the medium in the U.S. and the

Fig. 12. Comparison of a cumulative probability distribution of bot response
time between OICL and the baseline (ZombieCoin2.0).

longest in Singapore since the geographical distance between
Singapore and Germany is the longest compared with the other
two. Actually, the experiment of Singapore–Singapore is an
extreme situation in which both bot and Botmaster are in the
same place where they are far away from the full node they
are connecting to. Thereby the response time can be dras-
tically reduced if they choose a nearby full node to link to.
Therefore, Botmaster can assign a specific full node to a bot to
interact with via the SCDC. Also, we compared our proposal
with ZombieCoin2.0, our baseline, and as Fig. 12 shows, the
result of the experiment in Germany (Botmaster, bot, and full
node are all in one nation) is much better than the baseline.
Another advantage of our proposal that the baseline fails to
have is that the outliers of response time in ours are not too
far away from the main bulk, whereas they are 100–260 s in
the baseline (the longest instance is 8 s in our proposal by
adding up publishing time and fetching time in Singapore).

It is obvious that the total distance between the bot,
Botmaster, and full node plays as the main factor affecting
the latency of communication, thereby making the selection
of the full nodes enumerated by Algorithm 1 vital from the
view of Botmaster. The closer, the faster (and the less num-
ber of outliers). So, we recommended that Botmaster should

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9120 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 13. Cost comparison of the data (in different sizes) transferred by a bot
on the Bitcoin-based botnet and the OICL.

Fig. 14. Time cost comparison of the data (in different sizes) transferred by
a bot on the baseline and the OICL (with and without the big file uploading
enhancement).

proactively choose those full nodes as near as possible to the
location of the bots or his in order to make the bots respond
to his commands as quickly as they can, thereby keeping his
bots on an even keel.

C. Cost Comparison

1) Economic Cost Comparison: In the experiences of cost
comparison, the baselines are [30], [31], [34], [36], [37], and
[56] which are all Bitcoin-based botnets. Thus, we refer to
them as the baseline in this section. The cost of deploying the
botnet on these implementations and the OICL is evaluated and
compared in Fig. 13. The latency comparison of transferring
data in multiple sizes is shown in Fig. 14.

Fig. 13 illustrates the cost of a bot sending data in multiple
sizes in dollars on the Bitcoin-based baselines and the OICL.
Benefiting from zero transaction fees, sending data on the
OICL is free of charge compared with the baselines. The
reason why sending large data is so expensive on the Bitcoin-
based baseline can be found in

CBTC = n · �x/40� · f . (1)

In (1), n means the number of bots in the botnet that can
be considered as the scale of it. And x represents the total
size of the data needed to upload per day by a bot. And f is
the average transaction fee in dollars on the Bitcoin network

Fig. 15. Time comparison between upload enhanced and not enhanced.

(by the time of writing this article, it is U.S. $3.590 per
transaction). Formula (1) demonstrates the fact that deploy-
ing a super-scale botnet on Bitcoin (Ethereum shares similar
results [25] and [26]) is, to a large extent, not affordable for
individual Botmasters.

2) Time Cost Comparison: Since there is no miner in the
OICL, sending a transaction is far faster than other PoW-based
(Bitcoin-based) baselines do. We have evaluated and compared
the time cost of uploading data in multiple sizes in OICL
(with and without the big file uploading enhancement) and
the baseline. The result is rendered in Fig. 14.

As Fig. 14 shows, we have evaluated a bot that uploads
files in 40k, 60k, and 80k bytes on the baselines and on the
OICL with and without the big file uploading enhancement,
respectively. It is obvious that the OICL is far faster in file
uploading than it is on the Bitcoin-based baseline. We also
evaluate the OICL with and without the big file uploading
enhancement, respectively, in 2M, 4M, 6M, and 8M data. The
results are rendered in Fig. 15.

As Fig. 15 displays, after enhancement, the OICL is not
constrained by the capacity of the underlying MAM. The
experiment shows that after upload enhanced, uploading data
in the UC is much faster than not enhanced. Also, it is worth
noting that during experiments on Bitcoin, we perceive that not
just the long latency incurred by low TPS was a nuisance but
also the number of transactions hindered—full nodes would
ban those clients issuing a lot of transactions in a short period
of time from accessing the Bitcoin network for the purpose
of DDoS defense. Thereby, those who equip Bitcoin as a bot-
net’s communication channel will likely end up in lockdown.
In order to solve this problem, a Botmaster will have to set
up his own full node and use it to join the Bitcoin network
which entails the risk of exposing his identity to the adversary
since a full node in the Bitcoin network is supposed to be
discovered.

VI. SECURITY ANALYSIS

A. Thread Model

Unanimously, law enforcement agencies, usually backed by
bureaucracy and national departments, are viewed as the thread
to Botmasters. Thus, we take these entities as adversaries from
the point of view of Botmasters and analyze the abilities they
possess. They are able to:

1) Reclaim DNS Domain and IP address space. With the
influence exerted on ISPs and other network service
providers, the requisition launched by these entities,

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9121

from the point of view of Botmasters, adversaries, for the
digital assets, such as DNS and IP address involved in a
particular cyber incident, used for forensic postmortem
is usually compulsory. When the situation accentuates,
the adversaries can simply ask ISPs to reclaim the DNS
domains or IP possessed by C&C servers of a botnet to
take it down.

2) Require nodes, precisely, all kinds of digital devices
involved in the botnet including those benign devices,
for example, public digital services, such as Twitter,
GitHub, etc., leveraged by Botmaster to help transfer
traffic for the botnet, to shutdown to sabotage the botnet.
This is a kill switch that may incur collateral damage.

3) Scrutinize the domestic network traffic. All the ISP
and urban’s mainframe and backbone networks, even
Metropolitan Area Network, are under their oversight.
That is to say, the data within is at hand for them.

4) Obtain the bot executable binary files readily in which
the details and mechanism are contained. Due to the
fact that one of the goals of a botnet is to infect as
many devices as possible and proliferate rampantly, the
program used for infection is easily obtained.

5) Fully comprehend and grasp the mechanism that a
bot joins the botnet and communicates with its neigh-
bors and Botmaster via dissecting the bot executable
binary files and reverse-engineering them. That is to say,
any existing crypto keys and hardcoded DNS domains
and IPs will be harvested, neutralizing any symmet-
ric encryption-based communication. Furthermore, they
can artifact and customize the executable as in part the
functionality as the original version has into sensor or
crawler nodes that deployed to gather intelligence of bot-
nets such as to evaluate the size of the target botnet and
attempt to pollute it [20].

6) Infiltrate and lurk in the botnet to gather intelligence
such as NLs of bots in the vicinity and commands of
Botmaster relayed.

7) Sinkhole traffic of C&C server. Sinkholing is a tac-
tic used by security professionals to redirect malicious
botnet traffic into a reservoir under control where it is
analyzed and weaponized against the malicious bot or
botnet activity.

8) Identify botnets and distinguish between those network
traffic generated by bots and other benign devices
with miscellaneous algorithms vary from data feature
mining and analyzing to various machine learning mod-
els, such as data packet periodic features demonstrated
by anomaly degree [57], combination of unsupervised
classification and clustering algorithms [58], multilayer
neural networks [15], [59], [60], [61], [62], and even
voting system [2]. This ability of differentiation between
the moderate and the malicious nodes they possessed is
not omnipotent, though, mighty.

9) Attempt to set up sorties, including index poisoning [63],
peer list pollution, and Sybil attacks [64], into a botnet
in order to undermine it as severely as possible.

10) Spam any channel writeable. If any communication
channel was confirmed to be writable, for instance, those

tunnels for bots’ upstream and phoning home, then the
adversary has the ability to tram as large size of trash
data as the capacity of these tunnels has to jam the
communication of the botnet. However, the messages
of other bots that are not controlled by the adversary
will not be corrupted or forged.

B. Spam and DDOS Protection

Due to the elimination of transaction fees, sending trans-
actions in IOTA’s Tangle is totally free of charge, meaning
that the adversary might attempt to curtail the bot’s phoning
home process by spamming it with a huge ream of transac-
tions holding garbage data within, confounding the Botmaster
by depleting his network resources on receiving invalid trans-
actions, also outnumbering the normal benign bot’s phoning
home transactions. But IOTA’s Tangle has its rate control
mechanism scotching spams inherently. Although there are no
miners in Tangle, participants still need to solve hash puzzles
when they issue transactions. However, compared with bitcoin,
the PoW in Tangle is much easier and the power consumed
for computing the hash puzzle is far less small. Besides, the
difficulty of the hash puzzle is adjustable. This work can have
different degrees of difficulty where the actual required com-
putation time is exponential with the difficulty level: it triples
with every step in the IOTA protocol [65] as the formula below
shows

dn(t) = d0 + 	γ · rn(t)
. (2)

d0 represents the base difficulty of the PoW and rn(t) rep-
resents the number of transactions issued by node n in a
time interval and γ is the adaption rate parameter having a
range of zero to one. At time t , for the purpose of sending
transactions node n must perform PoW with difficulty dn(t)
such that if it tries to emit a large number of transactions in
a short period of time to jam the network, the difficulty of
PoW will increase exponentially, thus making the spam attack
contained.

C. Collateral Damage Binding

The notion of CDB we proposed helps prove why a parasite
botnet is more secure and robust than an autarky one. Also,
it serves as a protection mechanism improving the resilience
of the OICL when it faces some countermeasures adversaries
resort to taking to cause damage such as sinkholing, conspiring
with ISP to reclaim the DNS domain, and censorship.

The concept of CDB is derived from the parasite kind of
botnet such as Storm [18], which was attached to such exist-
ing network services or protocols like ED2K, to obfuscate
their communication traffic with the normal traffic flowing
on the premises they attached to. Although this strategy may
introduce obstacles to muddy the waters when an adversary
analyses the botnet’s data stream, it contributes no promo-
tion to the stamina of the botnet. That is to say, after the
adversary finds out the C&C server, the whole framework will
be at risk of being torn apart. Therefore, we have extended
the concept of parasitizing, tapped the potential for it, and
endowed it with mighty resistance to hold the adversary

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9122 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

at bay. Formally, when taking action to destroy a botnet
can also cause damage to the benign digital service (the
host) the botnet parasitizing, the CDB can be considered
accomplished.

In our botnet architecture, as leveraged on IOTA’s Tangle
(the host), the resilience of OICL is mostly delegated by the
DLT’s full nodes, which not only relay and pack our raw
transactions into formal ones but also do so with other com-
mon transactions, making them the mainstay of the DLT. Due
to the presence of these full nodes, the adversary is almost
impossible to either shut the DLT down or require these full
nodes to stop working. What is more, any kind of act lead-
ing to centralization such as content review and censorship is
not allowed by the DLT inherently as wiping full nodes out
will impair the resilience of DLT per se. Besides, as the last
defense, the broad, or virtually worldwide distribution of these
full nodes also makes the adversary powerless to expropriate
them.

Furthermore, we believe that it is the CDB that keeps the
Bitcoin network everlasting since great amounts of electricity
are consumed by the hashing PoW process to generate the cor-
rect nonce value, making its owners unwill to see the Bitcoin
network being torn down. Thus, it is the prize in the real world
that the DLT participators take forming one of the main fac-
tors that make the DLT so unbreakable. This prize, we name
it the CDB.

The damage in CDB means the loss the DLT bears,
which is undertaken by the DLT itself and the full nodes’
operators (the DLT’s participators). So it can be quanti-
fied in the views of the two. Via combining loss with the
host, the resilience of our parasite botnet will be greatly
elevated.

1) Damage Bound to Tangle’s Full Node Operators: For
participants in the IOTA’s Tangle, there are many benefits
for keeping a full node online, and they can be measured
by a particular unit named mana [66]. A full node can gain
mana by receiving and validating transactions sent from users.
Generally speaking, mana is an incentive mechanism built to
reward those participants who follow the DLT’s rule and slash
those who do not. Mana decays with time so it is easy to lose
but hard to get. Thereby, a full node has to stay online and
keep contributing to the DLT to get mana. If an operator hands
over the full node to the adversary, and ceases contributing to
the DLT, he or she will lose mana rapidly. The mana a full
node Z has at time t, MZ(t) can be rendered by the following
formula:

Mz(t) = Mz(0)e−γ t. (3)

In this formula, MZ(0) is the original mana, proportional to
the specific value in the transaction, generated from processing
transactions, therefore considered as a constant, and represents
the decay rate for mana. As the formula illustrated, the longer
the full node is offline, the more mana the operator will lose.
Apparently, those full nodes that have been operated for a
long time are more unwilling to be shut down, especially the
IOTA’s community-supported nodes being online ever since
the Tangle project began, which can be our binding anchors
hardcoded in the bot’s program.

2) Damage Bound to the Public DLT: Theoretically, in our
design, the botnet would perish only if all the full nodes crum-
bled. That is to say, in this situation, the odds are against, that
the bulk of the DLT has been eradicated. This would barely
happen since not just the decentralization and anti-SPoF trait
of the DLT but also the market capitalization thwarts this reper-
cussion from happening. As of the writing of this article, the
market cap of IOTA’s Tangle surpassed 2.42 billion dollars.
As a result, the invulnerability of our proposal is endorsed by
IOTA’s Tangle itself. Assuming that v presents the incident
that the IOTA’s Tangle is eradicated, and D(v) represents the
damage bore by the DLT. Thus, in (4), D(v) is equivalent to
the market cap [67] of the DLT itself (which is $3 564 683 675
by the time of writing this article). In our use case, DLT is
IOTA’s Tangle

D(v) = cap(DLTiota). (4)

VII. DISCUSSION

In this section, spectrums to enforce OICL from the view
of Botmaster as well as countermeasures by which law
enforcement can conduct against OICL are discussed.

A. Enhancements

In addition to the current components of our proposal, there
are some enhancements we consider as augmentations.

1) IFF: How to further enforce the capability of identi-
fying the adversary’s sensor in the botnet is a critical
problem that once solved the resilience of the botnet
will improve. Sensor detection in a botnet is such a
complicated problem that most botnet implementations
aforementioned in Section II do not have consideration
to achieve it. However, solving it will profit Botmaster
since sensors deployed by the adversary play as the van-
guard in neutralizing the botnet as they gather the very
first-hand intelligence of the targeted botnet via penetrat-
ing it. The key to identifying these cunning espionage
is that their patterns or you can say, behaviors, are dis-
crepant with normal bots because they are designed to
bring the target down rather than becoming its accom-
plice. For instance, they will neither follow Botmaster’s
commands nor upload valuable data back. In our ear-
lier design, we conceptualized some gravely complex
reputation mechanisms to evaluate the credibility of the
bot and assert whether a bot is benign or malicious.
For instance, if a bot’s software environment includes
multiple cybersecurity analysis tools, such as reverse
engineering software, network traffic sniffers, vulnera-
bility scanners, etc., its credibility rank will be degraded
and considered to be a honeypot once its credibility is
lower than a certain threshold. Later, we realized that the
fundamental essence a sensor or honeypot has is that it
will not participate in the botnet’s activities and con-
tribute nothing to the Botmaster. Honeypots or sensors
usually block egress data traffic, making them to some
extent like a blackhole among other normal bots. What
is more, some are smart enough to dodge this stereo-
type pattern by providing forged data for Botmaster.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9123

Therefore, we decided to abandon the reputation scheme
and design a new scheme, namely, the PoH, to detect
these sensors and examine the authenticity of their data
transferred back. As for those bots that do not upload any
data back, they will be alleged to sensors or honeypots
from the very outset. In addition, how to let bots detect
and kick out the malfunctioning nodes instead of the
Botmaster himself doing so is another interesting issue
that if it is solved the automation of the botnet will be
promoted and resources of the Botmaster saved. Given
the idea of binding botnets to Blockchain, in the future,
there might be implementations that let their bots vote
on Blockchain to decide which bot among them is sus-
pected of being espionage and the voting process does
not need Botmaster to participate.

2) Partition: Botmasters commonly monetize their activi-
ties by partitioning botnets and leasing them as “botnets
for hire.” Partitioning botnets also enables multitasking
and is a good damage control strategy in the case where
part of the network is compromised [30]. The P2P Zeus
botnet had over 200 000 bots, divided into several sub-
botnets, by hardcoding bots with sub-botnet identifiers
prior to deployment [68]. The Storm botnet assigned
unique encryption keys to bots to distribute them into
sub-botnets [69]. In our proposal, all the bots partici-
pating are separated into two groups inherently due to
the communication protocol. One is those having tasks
of DDoS or others that do not need to feed anything
back. The other consisted of those bots that need to
send digital trophies back to Botmaster, such as files,
credentials, etc. Apparently, the partition for two groups
is coarse-grained. In order to give the botnet more flexi-
bility, a Bloom Filter can be introduced to separate bots
into arbitrary groups to satisfy the need for fine-grained
control [30]

3) Stealth: It is noteworthy that there is a taboo Botmasters
are highly recommended not to do: operating a full node
of IOTA’s Tangle and then connecting themselves to
it. Under no circumstances do we encourage Botmaster
to operate his own full nodes on IOTA’s Tangle since
full nodes in most DLTs are public, for they are main-
tainers of them and they usually have fixed domains
or IP addresses on the Internet. Thus, they can be
discovered by others to join the DLT’s network. In
other words, a full node wants to expose itself to
others. Thereby, the risk of running a full node is
self-explanatory. Also, we argue that the existing covert
communication methods like [70] are not fitted for
botnet’s C&C, since for the purpose of recruiting as
many smart devices as possible, the binary execution
used to turn smart equipment into a bot tends to cir-
culate among the Internet. Thereby, there is no doubt
that it will be readily obtained by such adversaries
like researchers of anti-virus software vendors or dig-
ital forensic agencies, governments’ security sectors,
and other defenders of cybersecurity. As a result, the
mechanisms for covert communication within it are
wide open to these researchers, and once it has been

reverse-engineered completely, any subliminal channels,
no matter how deep they lurk, will be no longer covert.
The most important trait of covert communication is
stealth, but in this worst situation (execution binary
is captured by the adversary), there will be no secret
at all in the first place. But trust execution environ-
ment (TEE) implementation, such as software guard
extension (SGX), may shed light on protecting the
secrets within the execution binary. SGX is an isola-
tion mechanism, aiming at protecting code and data
from modification or disclosure even if all privileged
software is malicious [71]. This protection uses special
execution environments, so-called enclaves, which work
on memory areas that are isolated from the operating
system by the hardware. It is very difficult to debug,
reverse engineer, or analyze the executed malware inside
the enclave in any way [71]. Thus, by leveraging SGX,
the covert channel within the binary will remain con-
fidential even if the binary falls into the adversary’s
hands.

B. Mitigations

Although DLT parasitizing botnet derived all the attributes
of its host, there are still some measures [72], [73] defenders
(government and security agencies, we call them the defender
instead of the adversary) can take to undermine it.

1) Collecting information as more as possible of the bot-
net is the prerequisite to uproot it. Although PoH can
authenticate the validity of the CPU information sent
back, it is powerless to find out whether other data is true
or treacherous. Thus, the defender could even exploit
it as camouflage by sending truthful CPU information
while uploading other forged data. In this scenario,
PoH itself may act like a shield for the defender’s
nodes.

2) Law enforcements or governments (defender) can oper-
ate their own full nodes on Tangle’s network, and lure
Botmaster to connect to it. Once Botmaster has linked to
it, all the network connecting data including IP addresses
are available to defenders. This would contribute a lot in
capturing the Botmaster in the real world. But the diffi-
culty is how to trick Botmaster to choose the controlled
full nodes to connect.

3) On most DLTs, the address for sending and receiving
tokens (or messages) are public, thus, once the
Botmaster has sent or received messages his address
will be unveiled, and anyone can browse its history
of transferring data or tokens via Blockchain explorer.
Thereby, defenders can keep an eye on certain sus-
picious addresses and find clues and patterns of their
relationship with other addresses with the aid of Bigdata
analysis then further achieve traceability of Botmaster’s
identification in the real world.

4) Another countermeasure defenders can take is to invoke
operators of full nodes to exclude the transactions made
by those addresses that belong to Botmaster and admon-
ish the operators to stop relaying these transactions.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9124 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Although it sounds plausible in theory, it can only be
considered as the last resort since Botmaster can change
its addresses to nullify it. And the community of the
DLT’s operators is not so easily persuaded.

VIII. CONCLUSION

To summarize, we have described OICL, a new botnet
model leverages public DLT to achieve botnet communication
fully on-chain, and a novel sensor/honeypot detecting scheme,
called PoH, that identifies spy nodes infiltrating into our botnet
and promotes its resilience by reducing bots’ agglomeration.
Also, in security analysis, we introduce the concept of CDB,
CDB in short, a botnet resilience enforcing mechanism that
illustrates why the autarky botnets are weaker than parasite
ones against taking down. Eliminating the overheads of cost
and latency, the OICL can freely use all key strengths of the
DLT it leveraging, such as decentralization, low latency, and
anonymity, and it would be hard to distinguish OICL traffic
between normal traffic on Tangle since OICL uses the same
formatting of transactions for communication as normal Tangle
users do. Besides, without depending on NL that the tradi-
tional P2P botnet relies on, common take-down techniques
such as confiscating suspect Web domains, sinkholing, seiz-
ing C&C servers, or poisoning P2P networks, would not be
effective. Furthermore, the three channels (the BC, UC, and
SCDC) we design enable the Botmaster to readily send and
receive data without worrying about sabotage by the adver-
sary. Performance and efficiency experiments show that OICL
is far more cost-saving and quick-responsive than the baseline.
Also, in the view of botnet taking down, we discuss possible
defense methods against this new kind of botnet. Although
there is no evidence that this new kind of botnet is being put
into use in the wild, we believe it will be added to the bot-
net phylogeny sooner or later and we hope that our work will
prompt further discussions.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

[1] J. Á. Cid-Fuentes, C. Szabo, and K. Falkner, “An adaptive framework for
the detection of novel botnets,” Comput. Security, vol. 79, pp. 148–161,
Nov. 2018.

[2] M. Asadi, M. A. J. Jamali, S. Parsa, and V. Majidnezhad, “Detecting
botnet by using particle swarm optimization algorithm based on voting
system,” Future Gener. Comput. Syst., vol. 107, pp. 95–111, Jun. 2020.

[3] Y. Fu et al., “Stealthy domain generation algorithms,” IEEE Trans. Inf.
Forensics Security, vol. 12, pp. 1430–1443, 2017.

[4] J. Moubarak, M. Chamoun, and E. Filiol, “Comparative study of recent
MEA malware phylogeny,” in Proc. 2nd Int. Conf. Comput. Commun.
Syst. (ICCCS), 2017, pp. 16–20.

[5] N. Koroniotis, N. Moustafa, and E. Sitnikova, “Forensics and deep learn-
ing mechanisms for botnets in Internet of Things: A survey of challenges
and solutions,” IEEE Access, vol. 7, pp. 61764–61785, 2019.

[6] M. Prajapati and D. Dave, “Host-based forensic artefacts of botnet infec-
tion,” in Proc. Int. Carnahan Conf. Security Technol. (ICCST), 2019,
pp. 1–4.

[7] M. Mahmoud, M. Nir, and A. Matrawy, “A survey on botnet architec-
tures, detection and defences,” Int. J. Netw. Security, vol. 17, no. 3,
pp. 264–281, 2015.

[8] C. Cimpanu. “Avast and French police take over malware Botnet and
disinfect 850,000 computers.” Aug. 2019. [Online]. Available: https://
www.zdnet.com/article/avast-and-french-police-take-over-malware-botn
et-and-disinfect-850000-computers/

[9] A. Blaise, M. Bouet, V. Conan, and S. Secci, “Botnet fingerprinting:
A frequency distributions scheme for lightweight bot detection,” IEEE
Trans. Netw. Service Manag., vol. 17, no. 3, pp. 1701–1714, Sep. 2020.

[10] “Galileo RCS—Running an espionage operation.” Jul. 2015. [Online].
Available: https://www.4armed.com/blog/galileo-rcs-running-espionage-
operation/

[11] I. Makhdoom, M. Abolhasan, H. Abbas, and W. Ni, “Blockchain’s adop-
tion in IoT: The challenges, and a way forward,” J. Netw. Comput. Appl.,
vol. 125, pp. 251–279, Jan. 2019.

[12] U. Majeed, L. U. Khan, I. Yaqoob, S. A. Kazmi, K. Salah, and
C. S. Hong, “Blockchain for IoT-based smart cities: Recent advances,
requirements, and future challenges,” J. Netw. Comput. Appl., vol. 181,
May 2021, Art. no. 103007.

[13] X. Zheng, Z. Cai, J. Yu, C. Wang, and Y. Li, “Follow but no
track: Privacy preserved profile publishing in cyber-physical social
systems,” IEEE Internet Things J., vol. 4, no. 6, pp. 1868–1878,
Dec. 2017.

[14] H. Xia, L. Li, X. Cheng, X. Cheng, and T. Qiu, “Modeling and analysis
botnet propagation in social Internet of Things,” IEEE Internet Things
J., vol. 7, no. 8, pp. 7470–7481, Aug. 2020.

[15] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the Internet of Things
for network forensic analytics: Bot-IoT dataset,” Future Gener. Comput.
Syst., vol. 100, pp. 779–796, Nov. 2019.

[16] G. Vormayr, T. Zseby, and J. Fabini, “Botnet communication pat-
terns,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2768–2796,
4th Quart., 2017.

[17] S. K. Tetarave, S. Tripathy, E. Kalaimannan, C. John, and A. Srivastava,
“A routing table poisoning model for peer-to-peer (P2P) botnets,” IEEE
Access, vol. 7, pp. 67983–67995, 2019.

[18] T. Holz, M. Steiner, F. Dahl, E. W. Biersack, and F. C. Freiling,
“Measurements and mitigation of peer-to-peer-based botnets: A case
study on storm worm,” in Proc. LEET, vol. 8, 2008, pp. 1–9.

[19] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach, “Eclipse attacks
on overlay networks: Threats and defenses,” in Proc. IEEE INFOCOM,
2006, pp. 1–12.

[20] C. R. Davis, J. M. Fernandez, S. Neville, and J. McHugh, “Sybil attacks
as a mitigation strategy against the storm botnet,” in Proc. 3rd Int. Conf.
Malicious Unwanted Softw. (MALWARE), 2008, pp. 32–40.

[21] A. Nappa, A. Fattori, M. Balduzzi, M. Dell’Amico, and L. Cavallaro,
“Take a deep breath: A stealthy, resilient and cost-effective botnet using
Skype,” in Proc. Int. Conf. Detect. Intrusions Malware, Vulnerability
Assess., 2010, pp. 81–100.

[22] A. Dorri, M. Abadi, and M. Dadfarnia, “SocialBotHunter: Botnet detec-
tion in twitter-like social networking services using semi-supervised
collective classification,” in Proc. IEEE 16th Intl Conf Dependable,
Auton. Secure Comput. 16th Int. Conf Pervasive Intell. Comput.
4th Int. Conf Big Data Intell. Comput. Cyber Sci. Technol. Congr.
(DASC/PiCom/DataCom/CyberSciTech), 2018, pp. 496–503.

[23] D. Mónica and C. Ribeiro, “Leveraging honest users: Stealth command-
and-control of botnets,” in Proc. 7th USENIX Workshop Offensive
Technol. ({WOOT}), 2013.

[24] K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud computing:
A survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 2009–2030,
3rd Quart., 2020.

[25] H. Gao et al., “ZombieCoin3.0: On the looming of a novel botnet for-
tified by distributed ledger technology and Internet of Things,” in Proc.
IEEE 23rd Int. Conf. High Perform. Comput. Commun. 7th Int. Conf.
Data Sci. Syst. 19th Int. Conf. Smart City 7th Int. Conf. Dependability
Sens., Cloud Big Data Syst. Appl. (HPCC/DSS/SmartCity/DependSys),
2021, pp. 1625–1634.

[26] H. Gao et al., “BlockchainBot: A novel botnet infrastructure enhanced
by blockchain technology and IoT,” Electronics, vol. 11, no. 7, p. 1065,
2022.

[27] “The botnet chronicles: A journey to infamy,” Trend Micro, Tokyo,
Japan, White Paper, 2010.

[28] “What does global threat bot mean?” 2012. [Online]. Available: https://
www.techopedia.com/definition/59/global-threat-bot-gtbot

[29] I. Arce and E. Levy, “An analysis of the slapper worm,” IEEE Security
Privacy, vol. 1, no. 1, pp. 82–87, Jan./Feb. 2003.

[30] S. T. Ali, P. McCorry, P. H.-J. Lee, and F. Hao, “ZombieCoin 2.0:
Managing next-generation botnets using Bitcoin,” Int. J. Inf. Security,
vol. 17, no. 4, pp. 411–422, 2018.

[31] D. Frkat, R. Annessi, and T. Zseby, “ChainChannels: Private botnet com-
munication over public blockchains,” in Proc. IEEE Int. Conf. Internet
Things (iThings) IEEE Green Comput. Commun. (GreenCom) IEEE
Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData),
2018, pp. 1244–1252.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: ONE IOTA OF COUNTLESS LEGIONS: A NEXT-GENERATION BOTNET PREMISES DESIGN 9125

[32] G. Falco, C. Li, P. Fedorov, C. Caldera, R. Arora, and K. Jackson,
“Neuromesh: IoT security enabled by a blockchain powered botnet
vaccine,” in Proc. Int. Conf. Omni-Layer Intell. Syst., 2019, pp. 1–6.

[33] O. Alibrahim and M. Malaika, “Botract: Abusing smart contracts and
blockchain for botnet command and control,” Int. J. Inf. Comput.
Security, vol. 17, nos. 1–2, pp. 147–163, 2022.

[34] T. Curran and D. Geist, Using the Bitcoin Blockchain as a Botnet
Resilience Mechanism, Univ. Amsterdam, Amsterdam, The Netherlands,
2016.

[35] J. Sweeny, Botnet Resiliency via Private Blockchains, SANS Inst. Inf.
Security Reading Group, North Bethesda, MD, USA, 2017.

[36] S. Pletinckx, C. Trap, and C. Doerr, “Malware coordination using the
blockchain: An analysis of the cerber ransomware,” in Proc. IEEE Conf.
Commun. Netw. Security (CNS), 2018, pp. 1–9.

[37] K. Eisenkraft and A. Olshtein, “Pony’s C&C servers hidden inside
the Bitcoin blockchain,” 2019. [Online]. Available: https://research.
checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-
blockchain/

[38] L. Böck, N. Alexopoulos, E. Saracoglu, M. Mühlhäuser, and
E. Vasilomanolakis, “Assessing the threat of blockchain-based
botnets,” in Proc. APWG Symp. Electron. Crime Res. (eCrime), 2019,
pp. 1–11.

[39] S. Popov. “The Coordicide.” 2020. [Online]. Available: https://files.iota.
org/papers/20200120_Coordicide_WP.pdf

[40] “IOTA.” 2023. [Online]. Available: https://www.iota.org/
[41] S. Popov, “The tangle,” IOTA, Berlin, Germany, White paper, 2018.
[42] “In-depth explanation of how IOTA making a transaction (with

picture).” 2018. [Online]. Available: https://medium.com/@louielu/
in-depth-explanation-of-how-iota-making-a-transaction-with-picture-
8a638805f905

[43] Seed. “Create a seed.” Accessed: Feb. 2022. [Online]. Available: https://
legacy.docs.iota.org/docs/getting-started/1.1/transfer-tokens/create-a-
seed?q=seed&highlights=seed

[44] “HORNET.” 2023. [Online]. Available: https://hornet.docs.iota.org/
[45] Bee. “A Framework for building IoTA nodes, clients, and applications

in rust.” Accessed: Oct. 2022. [Online]. Available: https://bee.docs.iota.
org/

[46] “SWARM.” 2021. [Online]. Available: https://www.ethswarm.org/
swarm-whitepaper.pdf

[47] “IPFS—Content addressed, versioned, P2P file
system.” 2014. [Online]. Available: https://ipfs.io/ipfs/
QmV9tSDx9UiPeWExXEeH6aoDvmihvx6jD5eLb4jbTaKGps

[48] L. Böck, S. Karuppayah, T. Grube, M. Mühlhäuser, and M. Fischer,
“Hide and seek: Detecting sensors in P2P botnets,” in Proc. IEEE Conf.
Commun. Netw. Security (CNS), 2015, pp. 731–732.

[49] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay func-
tions,” in Proc. Annu. Int. Cryptol. Conf. 2018, pp. 757–788. [Online].
Available: https://eprint.iacr.org/2018/601

[50] A. K. Lenstra and B. Wesolowski, “Trustworthy public randomness
with sloth, unicorn, and TRX,” Int. J. Appl. Cryptogr., vol. 3, no. 4,
pp. 330–343, 2017.

[51] D. Boneh, B. Bünz, and B. Fisch, “A survey of two verifiable delay
functions,” IACR, Bellevue, WA, USA, Rep. 2018/712, 2018.

[52] B. Wesolowski, “Efficient verifiable delay functions,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptograph. Techn., 2019, pp. 379–407.

[53] K. Pietrzak, “Simple verifiable delay functions,” in Proc. 10th Innov.
Theor. Comput. Sci. Conf. (ITCS), 2018, pp. 1–20.

[54] “Poanetwork.” 2021. [Online]. Available: https://github.com/
poanetwork/vdf

[55] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Proc. 40th Annu. Symp. Found. Comput. Sci., 1999, pp. 120–130.

[56] K. Eisenkraft and A. Olshtein. “Servers hidden inside the Bitcoin
blockchain.” 2019. [Online]. Available: https://research.checkpoint.com/
2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain

[57] C.-M. Chen and H.-C. Lin, “Detecting botnet by anomalous traffic,” J.
Inf. Security Appl., vol. 21, pp. 42–51, Apr. 2015.

[58] O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K. Taha,
and K. Kim, “Data randomization and cluster-based partitioning for
botnet intrusion detection,” IEEE Trans. Cybern., vol. 46, no. 8,
pp. 1796–1806, Aug. 2016.

[59] A. A. Obeidat, “Hybrid approach for botnet detection using K-means
and K-medoids with hopfield neural network,” Int. J. Commun. Netw.
Inf. Security, vol. 9, no. 3, pp. 305–313, 2017.

[60] M. Alauthaman, N. Aslam, L. Zhang, R. Alasem, and M. A. Hossain,
“A P2P botnet detection scheme based on decision tree and adaptive
multilayer neural networks,” Neural Comput. Appl., vol. 29, no. 11,
pp. 991–1004, 2018.

[61] L. Mai and D. K. Noh, “Cluster ensemble with link-based approach for
botnet detection,” J. Netw. Syst. Manag., vol. 26, no. 3, pp. 616–639,
2018.

[62] R. McKay, B. Pendleton, J. Britt, and B. Nakhavanit, “Machine learning
algorithms on botnet traffic: Ensemble and simple algorithms,” in Proc.
Proc. 3rd Int. Conf. Comput. Data Anal., 2019, pp. 31–35.

[63] J. Liang, N. Naoumov, and K. W. Ross, “The index poisoning attack in
P2P file sharing systems,” in Proc. INFOCOM, 2006, pp. 1–12.

[64] J. R. Douceur, “The Sybil attack,” in Proc. Int. Workshop Peer-to-Peer
Syst., 2002, pp. 251–260.

[65] L. Vigneri and W. Welz, “On the fairness of distributed ledger technolo-
gies for the Internet of Things,” in Proc. IEEE Int. Conf. Blockchain
Cryptocurrency (ICBC), 2020, pp. 1–3.

[66] “Explaining mana in IOTA.” 2020. [Online]. Available: https://blog.iota.
org/explaining-mana-in-iota-6f636690b916/

[67] “Mainnet.” 2023. [Online]. Available: https://explorer.iota.org/mainnet
[68] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,

“Highly resilient peer-to-peer botnets are here: An analysis of gameover
Zeus,” in Proc. 8th Int. Conf. Malicious Unwanted Softw. Americas
(MALWARE), 2013, pp. 116–123.

[69] R. Naraine. “Storm worm botnet partitions for sale.” 2007.
[Online]. Available: http://www.zdnet.com/blog/security/storm-worm-
botnet-partitions-for-sale/592

[70] H. Cao et al., “Chain-based covert data embedding schemes in
blockchain,” IEEE Internet Things J., vol. 9, no. 16, pp. 14699–14707,
Aug. 2022.

[71] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,” in
Proc. Int. Conf. Detect. Intrusions Malware, Vulnerability Assessment,
2017, pp. 3–24.

[72] M. Alauthman, N. Aslam, M. Al-Kasassbeh, S. Khan, A. Al-Qerem,
and K.-K. R. Choo, “An efficient reinforcement learning-based bot-
net detection approach,” J. Netw. Comput. Appl., vol. 150, Jan. 2020,
Art. no. 102479.

[73] G. De La Torre Parra, P. Rad, K.-K. R. Choo, and N. Beebe, “Detecting
Internet of Things attacks using distributed deep learning,” J. Netw.
Comput. Appl., vol. 163, Aug. 2020, Art. no. 102662.

Haoyu Gao was born in Shanxi, China, in 1994. He received the B.Sc. degree
in software engineering from Nanjing University Jinling College, Nanjing,
China, in 2018, and the M.Sc. degree in software engineering from Inner
Mongolia University of Technology, Hohhot, China, in 2022. He is currently
pursuing the Ph.D. degree in cyber-security with Hainan University, Haikou,
China.

He also works as an Intern-Researcher with Oxford-Hainan Blockchain
Research Institute, Chengmai, China. His research interests include decen-
tralized computing and learning, and blockchain consensus.

Leixiao Li was born in Shandong, China, in 1978. He received the M.A.
degree in engineering from Inner Mongolia University of Technology, Hohhot,
China, in 2007, and the Ph.D. degree in engineering from Inner Mongolia
Agricultural University, Hohhot, in 2019.

He is with Inner Mongolia University of Technology, where he is currently
a Professor with the School of Data Science and Application and also with
the Research Center of Large-Scale Energy Storage Technologies, Ministry
of Education of the People’s Republic of China, Beijing, China. His research
interests include cloud computing, data mining, and big data processing.

Hong Lei received the bachelor’s and master’s degrees from Beihang
University, Beijing, China, in 2006 and 2009, respectively, and the Ph.D.
degree from Michigan State University (MSU), East Lansing, MI, USA, in
May 2015.

Then, he was a Postdoctoral Fellow with the Smart Microsystems
Laboratory, MSU. He joined Schweitzer Engineering Laboratory in 2016
and then joined the Department of Electrical and Computer Engineering as
a Tenure-Track Assistant Professor with Portland State University, Portland,
OR, USA, in July 2018. He was appointed as the Associate Dean of Oxford-
Hainan Blockchain Research Institute, Chengmai, China, in June 2019. He
is currently a Professor with Hainan University, Haikou, China, and doing
researches on TEE and blockchain.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

9126 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Ning Tian received the bachelor’s degree from Jinan University, Guangzhou,
China, in 2015, and the master’s degree from the University of Warwick,
Coventry, U.K., in 2016. She is currently pursuing the joint Ph.D. degree
with the University of Warwick and Hainan University, Haikou, China.

Her research interests include blockchain technology and digital identity.

Hao Lin was born in Tianjin, China, in 1995. He received the B.A. degree
in engineering from Tianjin University of Technology and Education, Tianjin,
in 2018, and the M.A. degree in engineering from Inner Mongolia University
of Technology, Hohhot, China, in 2021. He is currently pursuing the Ph.D.
degree in engineering with Tianjin University of Technology, Tianjin.

His research interests include cyberspace security, social engineering
attack, and data mining.

Jianxiong Wan received the B.Sc. degree in computer science from Shanxi
Normal University, Xi’an, China, in 2004, the M.Sc. degree in management
science from Beijing Information Technology Institute, Beijing, China, in
2009, and the Ph.D. degree in computer science from the University of Science
and Technology Beijing, Beijing, in 2013.

He was a Postdoctoral Research Fellow with Massey University,
Palmerston North, New Zealand, from 2016 to 2017, and also a Visiting
Researcher with Nara Institute of Science and Technology, Ikoma, Japan, from
2017 to 2018. He joined Inner Mongolia University of Technology, Hohhot,
China, in 2013, where he is currently a Professor with the School of Data
Science and Application. He is also with the Research Center of Large-Scale
Energy Storage Technologies, Ministry of Education of the People’s Republic
of China, Beijing. His research interests include dynamic optimization, intel-
ligent control, and performance modeling of distributed systems, with special
focuses on cloud-scale systems.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 29,2024 at 06:02:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

