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Abstract—In recent years, as blockchain adoption has been
expanding across a wide range of domains, e.g., digital asset,
supply chain finance, etc., the confidentiality of smart contracts is
now a fundamental demand for practical applications. However,
while new privacy protection techniques keep coming out, how
existing ones can best fit development settings is little studied.
Suffering from limited architectural support in terms of pro-
gramming interfaces, state-of-the-art solutions can hardly reach
general developers.

In this paper, we proposed the CLOAK framework for develop-
ing confidential smart contracts. The key capability of CLOAK is
allowing developers to implement and deploy practical solutions
to multi-party transaction (MPT) problems, i.e., transact with
secret inputs and states owned by different parties by simply
specifying it. To this end, CLOAK introduced a domain-specific
annotation language for declaring privacy specifications and
further automatically generating confidential smart contracts
to be deployed with trusted execution environment (TEE) on
blockchain. In our evaluation on both simple and real-world
applications, developers managed to deploy business services on
blockchain in a concise manner by only developing CLOAK smart
contracts whose size is less than 30% of the deployed ones.

Index Terms—Blockchain, Smart contract privacy, Trusted
execution environment

I. INTRODUCTION

With the rapid development of both permissionless and
permissioned blockchains, privacy issues have now become
one of the top concerns for smart contracts, i.e., keep trans-
action input and contract states as secrets to non-relevant
participants. In many of the practical applications, privacy is
an essential property to achieve, e.g., avoid malicious arbitrage
on cryptocurrency, protect sensitive information in a cooper-
ative business etc.. Unfortunately, despite the importance of
smart contract privacy, most of the existing blockchains are
designed without privacy by nature [10]. For example, miners
of Ethereum verify transactions in a block by re-executing
them with the exact input and states. Consequently, private
data is shared in the entire network.
Confidential Smart Contract. To address the aforementioned
problem, researchers have proposed a variety of solutions in
recent years to the design of confidential smart contract. In
general, these approaches fall into two categories based on
cryptography techniques and trusted hardware, respectively.
For the former class of approaches, techniques including ring
signature, homomorphic encryption and zero-knowledge proof

Fig. 1: A simplified multi-party transaction scenario

(ZKP) are adopted to achieve anonymity and privacy [1]–
[3], [7]. For the latter, Trusted Execution Environment (TEE),
e.g., Intel SGX, is commonly used to provide confidentiality
and trustworthiness [4], [8]. More specifically, TEE is able to
reveal sealed transactions and execute them in enclaves to hide
input and contract states with a verifiable endorsement from
the hardware manufacture.
Limitations. However, while both classes of solutions provide
architectural capabilities to enforce confidential lifecycles of
transactions, they are non-sufficient for the development of
practical applications. Figure 1 describes a scenario of pro-
curement bidding among multiple enterprises in the setting
of supply chain applications. Specifically, each participant
submits its secret bid and a core enterprise decides a winner
with the lowest bid. The core enterprise pays the second-lowest
bid to the winner instead of the lowest one through updates on
its balance. For cryptography-based solutions, developers are
required to implement a set of off-chain multi-party compu-
tation programs and on-chain verification smart contracts, as
indicated by [3]. On the other hand, TEE-based solutions allow
developers to implement general smart contracts with secrets
owned by only one side in a single transaction. Consequently,
the implementation needs to process one source of confidential
bid input at a time, cache intermediate bids and generate
final states when bidding completes. To sum up, confidential
smart contracts in the literature can hardly fit in the practical
development of multi-party applications.
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Fig. 2: The overall workflow of CLOAK

Multi-party Transaction. In this demo paper, we formalized
the Multi-party Transaction (MPT) problem on blockchain
for the first time and designed the CLOAK framework as a
practical solution to it. CLOAK enables developers to develop
and deploy confidential smart contracts in an MPT application
by simply specifying it. Specifically, CLOAK allows developers
to annotate privacy invariants as annotations in contract source
code. It checks the privacy specification consistency and then
generates deployable smart contract on blockchain. The main
contributions of this work are as follows:

• We formalized the Multi-party Transaction (MPT) problem
on blockchain for the first time, which transacts with secret
inputs and states owned by different parties.

• We developed a framework, CLOAK, which allows devel-
opers to annotate privacy invariants, including MPT, as an-
notations in smart contracts, and generate privacy-compliant
deployable code.

• We conducted a preliminary evaluation on real-world con-
tracts with different privacy scenarios. The result shows the
easy to use, high efficiency, and low cost of CLOAK.

Demonstration Plan. Our demonstration will showcase the
capabilities of CLOAK in handling real-world data privacy is-
sues. The detailed plan includes i) an automatic type checking,
compilation, and deployment process, ii) in-depth explanation
of the domain-specific annotation language, generated deploy-
able code, and debug skills when developing with CLOAK iii)
more comparative tests on representative contracts and privacy
scenarios.

II. MULTI-PARTY TRANSACTION

We propose a new smart contract data privacy problem in
blockchain called Multi-party Transaction (MPT): For n(n ∈
Z∗ ∧n > 1) parties, an MPT takes input xi from each party i
and C(s), which is the cryptography commitment of contract
old state s, e.g., the hash or encryption result of s, etc.. Then,
it runs the specified function f , publishes committed output
ri, a proof p and committed contract new state C(s′).

f(x1, x2, ..., xn, C(s))⇒ C(r1), C(r2), ..., C(rn), C(s′), p

An MPT should satisfy following two attributes:

• Confidentiality: Each party i knows ri without knowing
{xj , rj |i 6= j} except what can be derived from xi, ri itself.

i should also know state s or s′ only when it’s owned and
provided by him.

• Verifiability: With p, all nodes could verify that the com-
mitment of new state C(s′) and return value C(ri) is
the correct result of a function f , which takes unknown
{xj |j = 1..n ∧ j 6= i} from n(n ∈ Z∗ ∧ n > 1) parties and
old state s, which is committed by on-chain C(s).
MPT is different from Multi-party Computation (MPC).

In MPC, even though all MPC participants acknowledge the
transaction and record the result on a blockchain, it is hard
for other nodes to verify it. Consequently, other nodes regard
it as normal immutable data, making the MPC results lose
widespread trust. In contrast, MPT achieves the same level of
security and final consistency as smart contracts with proofs.

III. THE CLOAK FRAMEWORK

To handle the MPT problem, we designed a CLOAK frame-
work. Figure 2 shows the workflow of CLOAK. It mainly
divides into two phase, development and deployment. In the
development phase, developers first annotate privacy invariants
in Solidity smart contract intuitively to get CLOAK smart
contract. Annotation Checker checks the annotation to
make sure the privacy invariants are correct. The core of the
development phase is Cloak Engine, in which the Code

Generator, Policy Generator, and Compilation Core

generate verifier contract, service contract, and privacy config.
All generated code will be deployed to blockchains with TEE-
Blockchain Architecture, e.g., Oasis [4], CCF [9], etc..

A. Develop Confidential Smart Contract

Annotate Privacy Invariants. Developers could annotate
variable owner in the declaration statement to one of the {all,
me, id, tee}. The all means public; me means the msg.sender;
id is declared variable in type address; tee means any
registered address of SGX with CLOAK runtime.

With CLOAK, users could intuitively specify the MPT
in Figure 1 as a CLOAK smart contract, the .cloak file in
Listing 1. In line 1, the developer could declare the key
of balances as a temporary variable k, then specifies the
corresponding value is owned by the account with address k,
e.g., balances[tenderer] is only known by the tenderer

in line 23. In line 2, the developer specifies mPrice should
be public. In line 6-7, to handle an uncertain number of
suppliers, the developer declares owners p and specifies the
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owners’ owned data separately in two dynamic arrays. In line
10, the return value sPrice is owned by the winner. In
line 12-13, the developer reveal private data to another owner,
which is forced by CLOAK to avoid unconsciously leaking
privacy. In line 14-24, it computes the lowest price, the second
lowest price, and the winner. The computation is based on
the operation between private data from different parties, e.g.,
bids[i] < sPrice, balances[tenderer] += sPrice.

1 contract SupplyChain {
2 mapping(address !k => uint @k) balances;
3 uint @all mPrice;
4

5 function biddingProcure(
6 address[!p] parties,
7 uint[@p] bids,
8 address tenderer
9 ) public

10 returns (address winner, uint @winner sPrice) {
11 winner = parties[0];
12 uint mPrice = reveal(bids[0], all);
13 sPrice = reveal(bids[0], winner);
14 for (uint i = 1; i < parties.length; i++) {
15 if (bids[i] < mPrice) {
16 winner = parties[i];
17 sPrice = mPrice;
18 mPrice = bids[i];
19 } else if (bids[i] < sPrice) {
20 sPrice = bids[i];
21 }
22 }
23 balances[tenderer] -= sPrice;
24 balances[winner] += sPrice;
25 }
26 }

Listing 1: CLOAK smart contract of bidding procurement

Annotation Checker. Taking a CLOAK smart contract,
CLOAK ignores the annotation to checks the Solidity vali-
dation first. Then, CLOAK builds an Abstract Syntax Tree
(AST) for further analysis. It infers data owner and checks
the privacy invariants. It traversals the AST in post-order
and updates each parent node’s owner op = ol ∪ or. The
ol and or is the owner set of the left and right child node
respectively. CLOAK recognizes a function as an MPT if
TEE ∈ o or |o \ {all}| ≥ 2. The latter means the function
will take private data from different parties. Then, CLOAK
checks privacy invariants consistency. For example, CLOAK
prohibits developers from implicitly assigning their private
data to variables owned by others.

B. Deploy Confidential Smart Contract

Policy Generator. With checked AST, Policy Generator

generates a privacy config P for the contract. P simplifies
and characterizes the privacy invariants. Typically, P includes
variables with data type and owners. It also includes ABI,
a read-write set of each function. Specifically, P records
each function’s characteristics from four aspects, inputs, read,
mutate and return. The inputs includes its parameters with
specified data type and owner; read records state variables
the function read in execution; mutate records the contract
states it mutated; return records the return variables. Since P
has recorded the details of state variables in the head, e.g.,

data type and owner, Policy Generator leaves the variable
identities in read, mutate and return.
Code Generator. Code Generator generates a service
contract F and a verifier contract V . While leaving the
computation logic in F , Code Generator generates V to
verify the result and update the state. In V , Code Generator

first imports a pre-deployed CLOAK TEE registration contract,
which holds a list of registered SGXs with CLOAK runtime.
Then CLOAK transforms each MPT function in .cloak into a
new function in V , which verifies the MPT proof p and assigns
new state C(s′) later.
CLOAK Client. With configured nodes IP and ports by devel-
opers, CLOAK deploys the confidential smart contract runtime
to TEE-Blockchain Architecture to get trusted CLOAK execu-
tors Es. The runtime includes VM and a Enc/Dec Module.
Then, CLOAK deploys a SGX registration contract on the
blockchain and registers the Es’ certificate. For each CLOAK
smart contract, CLOAK will deploys generated P and F to Es
and V to the blockchain separately.

When a participant proposes an MPT, each participant i
provides the xi to SDK. xi will be encrypted and sent to Es.
According to deployed P , Es wait for all private inputs,
synchronize the read state, construct a transaction, and exe-
cute it in enclaves. Then, Es encrypt return values and mutated
states according to return and mutate. Finally, Es announce
a result transaction on-chain with an MPT proof p. The p is
Es’ signature, i.e., p = SigE < P,F,C(s), C(ri), C(s′) >.
It means compliant to P , Es confidentially execute F with
private inputs xi and old state s committed by C(s) in
enclaves, commit return value ri and new state s′ to get result
C(ri), C(s′). Upon receiving the announcement transaction
with proof, all nodes and V could believe an MPT real
happened and get the result.

IV. PRELIMINARY EVALUATION

We conducted a preliminary evaluation of CLOAK on 9 con-
tracts. The 9 contracts vary from scenarios, privacy invariants
and have representative LOC in Ethereum smart contract [6].

TABLE I: The LOC of code before and after using CLOAK.
the number of Functions (public, private, MPT) ; the LOC of
CLOAK smart contract; the whole generated verifier contract
Vall; generated service contract F, verifier contract V and
privacy config P for MPTs

Name #Functions #CLOAK #Vall
MPT related

#F #V #P

PowerGrid 4(1, 1, 2) 25 146 23 126 72
Bidding 4(0, 2, 2) 44 148 38 123 102
SupplyChain 6(0, 5, 1) 68 249 36 145 85
Scores 6(0, 2, 4) 77 239 57 211 174
Insurance 8(2, 3, 3) 89 356 52 271 199
ERC20Token 11(4, 4, 3) 112 347 56 218 173
YunDou 14(10, 0, 4) 279 501 166 361 345
Oracle 22(19, 0, 3) 326 413 93 190 196
HTLC 39(31, 0, 8) 1029 852 429 401 443

Programming Simplicity. Table I shows the LOC of privacy-
compliant code before and after using CLOAK. Specifically,
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for MPT functions, while developers simply annotate in
Solidity contract, CLOAK generates a total of 2.97-9.61X
LOC, including 0.73-5.47X verifier contract LOC in Solidity
and 1.03-3.13X privacy config in JSON. Therefore, CLOAK
significantly reduces the development complexity of privacy
in cryptography understanding and code implementation.
Performance. It costs CLOAK less than 1s to compile 8
contracts, while the biggest contract HTLC takes 5s. This is
completely acceptable.
Gas Cost. In Figure 3, for a total of 27 MPT in 9 contracts,
the transformed MPTs cost 0.8X to the original no privacy
transactions on average. Specifically, the lowest one is 0.35X.
The highest cost in the last 8 is 1.25X. Overall, running trans-
actions on transformed contracts are feasible at a moderate
cost.

Fig. 3: Gas cost of MPT before and after CLOAK

V. DEMONSTRATION DESCRIPTION

Currently, for simplicity, we implement the CLOAK frame-
work for a TEE-Blockchain Architecture consists of Ethereum
and SGX simulators. It is a command-line tool and requires
dependencies including ANTLR 3.82, Python 3.8, and solc [5]
0.5.17. A simple command to run CLOAK is:
$ cloak -i example.cloak -o out_dir

Specifically, cloak is a running script to start CLOAK. -i
specify the input CLOAK smart contract, .cloak. -o specify the
output directory to store generated code. In the demonstration,
we use two use cases. i.e., basic development and deployment
and annotation debugging. The first helps developers under-
stand the basic capabilities of CLOAK; the second shows fine-
grained info of .cloak which is critical in debugging.
Use Case 1: Basic Development and Deployment. Developers
use CLOAK on a supplied CLOAK smart contract, i.e., a
contract with annotated private data and data owner. First,
we go through the source code of the specified contract with
developers and introduce its metadata. Next, a participant will
start the compilation of CLOAK with the basic configuration.
We let the participant monitor the runtime logs generated
by CLOAK in annotation checking. When it finishes policy
and code generation, CLOAK will display an overview of the

compilation process, e.g., the private data and its owner, the
function type recognized, the time used, etc.. Furthermore, we
go into details of each function with developers and explain
why CLOAK recognizes the function as a public, private, or
MPT function. The developers can see the specific privacy
statement resulting in the recognized function type and check
whether the Privacy Config is expected.

Additionally, by using SDK, developers could deploy
the generated verifier contract on a local Ganache-driven
blockchain, the runtime, service contract, and privacy config
in an SGX simulator. When it’s done, they can send an MPT
cooperating with two parties to know how it works and make
sure it is privacy compliant.
Use Case 2: Annotation Debugging. This case focuses
on debugging privacy invariant annotation when developing
CLOAK smart contracts. We provide a group of CLOAK smart
contracts with different errors. Developers can learn about de-
bugging by flexibly using different commands to fine-grained
control the CLOAK behavior. For example, developers could
additionally use -s/--solc to ignore the CLOAK annotation
and check the Solidity validation. -t specify the CLOAK just
doing annotation checking and report privacy config. --debug
specify CLOAK to show more compilation details, i.e., the
time used in annotation checking and code generation of
each function, the hash of generated verifier contract, service
contract, privacy config, and runtime.
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