
1

DECLOAK: Enable Secure and Cheap Multi-Party
Transactions on Legacy Blockchains by a

Minimally Trusted TEE Network
Qian Ren∗ , Yue Li∗ , Yingjun Wu , Yuchen Wu , Hong Lei , Lei Wang , and Bangdao Chen

Abstract— The crucial blockchain privacy and scalability
demand has boosted off-chain contract execution frameworks for
years. Some have recently extended their capabilities to transition
blockchain states by off-chain multi-party computation while
ensuring public verifiability. This new capability is defined as
Multi-Party Transaction (MPT). However, existing MPT solutions
lack at least one of the following properties crucially valued
by communities: data availability, financial fairness, delivery
fairness, and delivery atomicity.

This paper proposes a novel MPT-enabled off-chain contract
execution framework, DECLOAK. Using TEEs, DECLOAK solves
identified properties with lower gas costs and a weaker assump-
tion. Notably, DECLOAK is the first to achieve data availability
and also achieve all of the above properties. This achievement is
coupled with its ability to tolerate all-but-one Byzantine parties
and TEE executors. Evaluating 10 MPTs in different businesses,
DECLOAK reduces the gas cost of the SOTA, Cloak, by 65.6%.
This efficiency advantage further amplifies with an increasing
number of MPT’s parties. Consequently, we establish an elevated
level of secure and cheap MPT, being the first to demonstrate
the feasibility of achieving gas costs comparable to Ethereum
transactions while evaluating MPTs.

Index Terms—Confidential Smart Contract, Multi-Party Com-
putation, Trusted Execution Environment

I. INTRODUCTION

WHILE blockchains are rapidly developed and adopted
in various scenarios, e.g., DeFi and IoT, blockchain

privacy and scalability issues have become two top concerns.
These concerns motivate off-chain smart contract execution

frameworks.

This work was supported in part by the National Key R&D Program
of China (No. 2021YFB2700600); in part by the Finance Science and
Technology Project of Hainan Province (No. ZDKJ2020009); in part by the
National Natural Science Foundation of China (No. 62163011); in part by the
Research Startup Fund of Hainan University under Grant KYQD(ZR)-21071.
(Corresponding author: Hong Lei)
∗ These authors contributed to the work equally and should be regarded as

co-first authors.
Q. Ren is with The Blockhouse Technology Ltd., Oxford OX2 6XJ, UK.

(email: qianren1024@gmail).
Y. Li is with the School of Computer Science, Peking University, Beijing,

China 100871. (email: liyue cs@pku.edu.cn)
L. Wang is with the Department of Computer Science and Engineer-

ing, Shanghai Jiao Tong University, Shanghai, China 200240. (email: wan-
glei@cs.sjtu.edu.cn)

H. Lei is with the School of Cyberspace Security (School of Cryptology),
Hainan University, Hainan, China 570228.

Yi. Wu, Yu. Wu, H. Lei, and B. Chen are with the Oxford-Hainan
Blockchain Research Institute and SSC Holding Company Ltd., Wok Park,
Laocheng, Chengmai, Hainan, 571924 China. (email: yingjun, yuchen, lei-
hong, bangdao@oxhainan.org).

Off-chain contract execution with MPC. The common
idea of off-chain contract execution frameworks [1]–[3] is
to offload the contract execution from the blockchain to off-
chain systems, where the blockchain functions as a trust
anchor to verify executions and store states. Subsequently,
some promising solutions extend the off-chain contract to
Multi-Party Transaction (MPT) [4], [5], including auction [6],
personal finance [7] and deal matching [8], [9]. MPT refers
to transitioning blockchain states by a publicly verifiable off-
chain MPC, where the MPC takes on- and off-chain inputs
from, and delivers on- and off-chain outputs to multiple
parties, without leaking their inputs/outputs to the public
or each other. For example, in a second-price auction [6],
multiple mutually distrustful parties perform an auction on
their confidential on-chain balances and off-chain bids jointly.
When the auction finishes, the party with the highest bid
wins and pays the second-highest price on-chain. To enable
MPT, two kinds of solutions exist. The first is cryptography-
based solutions, which adopt MPC [10]–[12] or Homomorphic
Encryption (HE) [13] to allow parties jointly and confidentially
evaluate a program off-chain, then commit the evaluation
status/outputs on-chain. The second, TEE-based solutions [2],
[5], [7], uses TEE to collect private data from parties, evaluates
a program with the data inside enclaves, and finally commits
the evaluation status/outputs on-chain.

Limitations. However, existing solutions of MPT suffer from
at least one of the following flaws: (i) Do not achieve data
availability, making them vulnerable to data lost when off-
chain systems fail. For example, even with ZKP or TEE
to prove the correct state transitions, users cannot know
their balances if the system withholds updated states. This
property is identified and keenly required by the Ethereum
community [14], and the community has designed a series of
measures to uphold it, e.g., calldata [15]–[17] and blob [18],
which are keys of the coming Cancun upgrade [19]; (ii) Do
not achieve financial fairness, so they can only assume a rate
of honest nodes exists but cannot monetarily urge profit-driven
nodes to behave honestly or punish misbehaved nodes; (iii) Do
not achieve delivery fairness, which requires delivering outputs
to corresponding parties at almost the same time. Formally,
we say an MPC protocol achieves ∆-fairness if the time of
different parties receiving their outputs distributes in a ∆-
bounded period. A large ∆ will lead to several attacks, e.g.,
if a party before others knows that an MPT buys an ERC20

1556-6021 © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

https://orcid.org/0000-0002-2617-1321
https://orcid.org/0000-0002-4137-619X
https://orcid.org/0000-0001-6567-7838
https://orcid.org/0009-0000-0231-4570
https://orcid.org/0000-0002-6564-1568
https://orcid.org/0000-0001-7170-2825
https://orcid.org/0000-0003-3225-4286

2

token and changes the trade rate, it can front-run an arbitrage
transaction, so-called front-running attacks, e.g., MEV [20];
(iv) Do not achieve delivery atomicity, i.e., either committing
new states and delivering off-chain outputs, or none happens.
The lack of atomicity enables the adversary to obtain off-chain
outputs before the new states are committed on-chain, leading
to rewinding attacks. It also leads to risks for parties to lose
their committed outputs [1] permanently; (v) Require high-cost
interactions with the blockchain.
Our work. We propose DECLOAK, a novel MPT-enabled
off-chain contract execution framework based on TEE. DE-
CLOAK solves all the above problems with lower gas cost
and weaker assumption. Specifically, to enable MPTs on a
legacy blockchain, e.g., Ethereum [21], we require multiple
TEE executors to register their TEEs on a deployed DECLOAK
contract. The contract thus be aware of all TEEs and will
specify a specific TEE to serve all MPT. Then, multiple
parties interact with the specified TEE off-chain to send
MPTs. To achieve data confidentiality and availability (cf.,
i), we propose a novel data structure of commitments. The
structure allows each party and TEE to independently access
the newest states from the blockchain, even though all other
entities are unavailable. To achieve financial fairness (cf., ii)
and low cost (cf., v), we propose a novel challenge-response
subprotocol. It enables the DECLOAK contract to identify the
misbehaviour of the specified TEE and replace it with another
TEE. With the subprotocol, all honest entities among parties
and TEE executors will never lose money, and at least one
misbehaved entity will be punished. To achieve atomicity (cf.,
iv) and delivery fairness (cf., iii), we require all TEEs to
independently release the keys of output ciphertext only after
verifying that the output commitments have been accepted and
confirmed on-chain. This way, multiple parties obtain their
corresponding outputs almost simultaneously. Consequently,
DECLOAK achieves the data availability, financial fairness,
delivery fairness, and delivery atomicity of MPTs simultane-
ously with only 34.4% gas cost of the SOTA, Cloak [5], while
assuming at least one party and TEE executor are honest.
Last, we demonstrate how to optimize or prune DECLOAK
for simpler or less secure scenarios, including how further to
trade some secure properties for lower gas costs.
Contributions. Our main contributions are as follows.

• We design a novel off-chain contract execution framework,
DECLOAK, which enables MPTs on legacy blockchains.

• We propose a protocol which achieves confidentiality, data
availability, financial fairness, delivery fairness, and delivery
atomicity of MPT simultaneously, while requiring at least
one party and at least one of TEE executors to be honest.

• We implement DECLOAK and evaluate it on 10 MPTs with
varying parties from 2 to 11.

• We demonstrate how to optimize further or fine-tune DE-
CLOAK protocol to make trade-offs between security and
cost for simpler MPT scenarios.

Organization. We organize the paper as follows. Section II
introduces MPT, primitives and symbols we used. Section III
introduces a comparison of DECLOAK and related work. Sec-
tion IV sketches DECLOAK. Section V details the DECLOAK

protocol. Section VI introduce the DECLOAK prototype. In
Section VII, we conduct a security analysis of DECLOAK.
In Section IX, we discuss how to optimize the DECLOAK
protocol and make trade-offs between the security and gas
cost when degenerating MPT to simpler scenarios. Finally, we
evaluate DECLOAK in Section VIII and conclude in Section X.

II. BACKGROUNG AND PRIMITIVES

In this section, we brief the problem Multi-Party Transaction
(MPT) we target and primitives. The symbols used in this and
the following sections are summarized in Table I.

A. Multi-Party Transaction
Informally, Multi-Party Transaction (MPT) refers to a trans-

action which transitions states on-chain by a publicly verifiable
off-chain MPC. The off-chain MPC in an MPT takes on-
and off-chain inputs and delivers on- and off-chain outputs.
Formally, MPT is modeled as below [4], [5].

cs1 , . . . ,csn

c f , cx1 ,...,cxn
=⇒ cs′1

, . . . ,cs′n ,cr1 , . . . ,crn , proo f

| s1, . . . ,sn
f (x1,...,xn)
=⇒ s′1, . . . ,s

′
n,r1, . . . ,rn

For a blockchain and an array of parties P where |P| =
n (n ∈ Z∗ ∧ n > 1), we denote a party P[i] as Pi. An MPT
takes as inputs a secret parameter xi and old state si from
each Pi, confidentially evaluates f off-chain, then delivers a
secret return value ri and new state s′i to Pi, while publishing
their commitments cxi ,csi ,c f ,cs′i

,cri and a proo f on-chain. An
MPT should satisfy the following properties.
• Correctness: When each Pi providing xi,si obtains s′i,ri, it

must hold that
s1, . . . ,sn

f (x1,...,xn)
=⇒ s′1, . . . ,s

′
n,r1, . . . ,rn

• Confidentiality: Each Pi cannot know {x j,s j,s′j,r j| j ̸= i}
except those that can be derived from public info and the
secrets it provides.

• Public verifiability: With proo f , any node can verify that
the state transition from the old state commitments array
cs← [csi |1..n] to new state commitments array cs′← [cs′i

|1..n].
And it is caused by an unknown function f (committed by
c f) which takes unknown parameter xi (committed by cxi)
and old state si (committed by csi) as inputs , and outputs
unknown new state s′i (committed by cs′i

) and return value
ri (committed by cri).
The generality of MPT makes it easy to be applied to

various scenarios [5], [10]. For example, recall the second-
price auction in Section I. The bids should keep private to
their corresponding parties, i.e., confidentiality is held; The
public (e.g., blockchain miners) ought to verify that the output
is the correct output of a claimed joint auction, i.e., the
correctness and public verifiability hold. We demonstrate more
MPT scenarios in Section VIII.

B. Trusted Execution Environment
Trusted Execution Environment (TEE) is a technology

which enables an isolated execution environment, a so-called
enclave, to ensure the integrity and confidentiality of its inside

3

Table I
A SUMMARY OF MAIN SYMBOLS

Topic Symbol Name Description

MPT

P (Pi) Parties An array of an MPT’s participants where Pi← P[i]
xi,si, f ,s′i,ri - Pi’s parameter, old state, logic/program, new state and return value

cxi ,csi ,c f ,cs′i
,cri - The commitment of Pi’s parameter, old state, new state and return value

P, proo f - An MPT’s logic f , policy P , and publicly verifiable proo f

Framework

BC Blockchain A BC enables Turing-complete smart contracts

DN (E,E,Ei,Ei) DECLOAK network A network DN consisting of an array of executors E and TEEs E , where Ei← E[i]
and Ei← E[i]

Protocol

E∗,E ∗ Specified TEE/executor The specified TEE E ∗ and its executor E∗ where E ∗← E[0]
(ski, pki,adi) Party account The private key, public key, and address of the party Pi’s account

(skE , pkE ,adE) Network account The private key, public key, and address of the network account shared among E
Procnneg,Procfdel
Procdcmt,Procrcha

Subprotocols Nondeterministic negotiation, ∆-fair delivery, data commitment, and challenge-response
subprotocols, respectively

p, p′ proposals An initiated MPT proposal p and its corresponding settled proposal p′
T XchaT challengeTEE A transaction from the specified TEE E[0] to publicly challenge the malicious executor
T Xacki acknowledge A transaction from the party Pi to publicly join the MPT proposal
T X f neg failNegotiation A public response from the specified TEE E[0] to T XchaT to signal the negotiation failure
T XchaP challengeParties A transaction from the specified TEE E[0] to publicly challenge the malicious parties
T XresPi partyResponse A public response from the party Pi to T XchaP
T Xcmt commit A transaction from the specified TEE E[0] to commit and lock the MPT outputs
T Xcom complete A public response from the specified TEE E[0] to T XchaT to complete the MPT
T XpnsP punishParties A public response from the specified TEE E[0] to T XchaT to punish malicious parties
T XpnsT punishTEEx A transaction from anyone to punish the misbehaved TEE

code. Different TEEs have been presented, including open-
source TEEs such as Keystone [22] as well as not, e.g., Intel
SGX [23], AMD SEV [24], ARM TrustZone [25]. To design
TEE-agnostic protocols, we follow [2], [26] to model the ideal
functionality of attestable TEEs. Specifically, each TEE is
initialized with a pair of keys (msk,mpk)← Σ.keyGen(1λ)
by its manufacturer. Σ is a digital signature algorithm. msk is
the TEE’s built-in master secret key. mpk is the corresponding
public key. For a program code prog, a TEE’s ideal function-
ality provides the following APIs:
• mpk← getpk(): query the mpk of the TEE.
• eid ← install(prog): install the program prog into the

TEE as a new enclave of which the enclave id is eid.
• (out p,σ)← resume(eid, inp): resume the enclave eid to

execute its program prog with the fed input inp. σ ←
Σ.signmsk(eid, prog,out p) is the signature of TEE which
endorses that out p is the obtained output.

With the obtained mpk, anyone trusts output out p when
Σ.verify(σ ,eid, prog,out p) = 1, indicating the success of
signature verification.

C. Elliptic Curve Diffie–Hellman Key Exchange
Elliptic Curve Diffie–Hellman (ECDH) is an Elliptic Curve

variant of the Diffie-Hellman key exchange protocol. For two
parties, each has an elliptic-curve public-private key pair,
ECDH allows them to anonymously establish a shared secret
over an insecure channel. Technically, a trivial ECDH is as
follows [27], [28]. Say we have an ECC elliptic curve with
a generator point G. Two parties P0,P1 want to establish a
shared secret. Their key pairs are (sk0, pk0) and (sk1, pk1),
respectively, where pk0← sk0 ·G and pk1← sk1 ·G. Each party
must know the other party’s public key before the protocol.
Then, each party Pi independently derives a shared secret
by k ← ski · pk1−i. Note that no party other than these two

can derive the same secret unless that party can solve the
elliptic curve discrete logarithm problem. As the problem is
believed to be more computationally difficult than the classical
finite field discrete logarithm problem and elliptic curves, offer
certain advantages in terms of key sizes and performance,
ECDH has gained popularity and is increasingly replacing the
traditional Diffie-Hellman key exchange protocol in various
applications [29], e.g., Google Chrome and Safari.

While the trivial ECDH above is vulnerable to man-in-the-
middle attacks, the issue can be solved by requiring one of the
two parties’ public keys to be static, i.e., the key’s authenticity
is assured by third-party means [30] like certificate, TEE
attestation or blockchain. It is also suggested to corporate an
ephemeral public key with the static key to achieve forward
secrecy etc. [27], such as ECC MQV [30]. Moreover, instead
of using the shared secret directly, deriving other keys, such
as symmetric keys for AES, DES, etc., from the secret to
establish secure channels can reduce the risk of exposing
parties’ private keys. ECDH has been widely applied in many
protocols, such as TLS. In this paper, we model the ECDH
as k ← ecdh(ski, pk1−i) to simplify the process where two
parties P0,P1 derive a shared symmetric key k.

III. RELATED WORK

In this section, we first exemplify related work in categories,
illustrate why they flaw key MPT properties, and then elab-
orate how DECLOAK superiors them by solving these flaws.
We summarize the comparison in Table II.
TEE-based confidential smart contracts. Confide [31], Eki-
den [1], CCF [34], and POSE [3] are designed to confide
transaction inputs/outputs and states. However, they consider
transactions as independent. Consequently, they do not involve
multiple parties in their achieved properties, e.g., verifiability
and atomicity, nor involve multi-party specific properties, e.g.,

4

Table II
COMPARING DECLOAK WITH RELATED WORK. THE SYMBOLS ✕, ❍, ◗ AND ● REFER TO “NON-RELATED”, “NOT-MATCHED”, “PARTIALLY-MATCHED”
AND “FULLY-MATCHED” RESPECTIVELY. “ADVERSARY MODEL” MEANS HOW MANY BYZANTINE ENTITIES CAN BE TOLERANT. “DATA AVAILABILITY”

MEANS WHETHER PARTIES OR TEES CAN ACCESS STATES INDEPENDENTLY. “FINANCIAL FAIRNESS” MEANS HONEST PARTIES NEVER LOST MONEY
WHILE AT LEAST ONE MISBEHAVED NODE MUST BE PUNISHED. “DELIVERY FAIRNESS” MEANS EITHER THE MPT FAILS OR PARTIES OBTAIN THEIR

OUTPUTS IN ALMOST THE SAME TIME. “DELIVERY ATOMICITY” MEANS WHETHER BOTH COMMITTING OF OUTPUTS AND THE DELIVERY OF OUTPUT
OR NONE OF THEM ARE GUARANTEED.

Approach Adversary Model min(#TX) Confidentiality Public
Verifiability

Data availability Financial
Fairness

Delivery
Fairness

Delivery
Atomicity

Parties TEE Executors Parties TEEs

Ekiden [1] 1∗ m∗−1 O(1) ● ◗ ❍ ❍ ✕ ✕ ●
Confide [31] 1∗ ⌊(m∗−1)/2⌋ O(1) ● ◗ ❍ ● ✕ ✕ ✕
POSE [3] 1∗−1 m∗−1 O(1) ● ◗ ❍ ● ✕ ✕ ❍
Hawk [6] n∗ ✕ O(n) ◗ ◗ ❍ ✕ ● ❍ ❍
ZEXE [32] n∗ 1∗ O(1) ◗ ◗ ❍ ✕ ✕ ✕ ❍
Choudhuri et al. [33] n∗ m∗ |m=n O(1) ● ◗ ✕ ✕ ✕ ● ✕
LucidiTEE [7] n∗ m∗−1 O(n) ● ◗ ❍ ◗ ✕ ◗ ●
Fastkitten [2] (n∗+1∗)−1 O(n) ◗ ◗ ❍ ❍ ● ❍ ❍
Cloak [5] (n∗+1∗)−1 O(1) ● ● ❍ ● ● ❍ ❍
DECLOAK n∗−1 m∗−1 O(1) ● ● ● ● ● ● ●

The ∗ denotes the total number of the specific type of entities, e.g., 1∗ denotes the unique party/executor, n∗ denotes all n parties, and m∗ denotes all
executors.

negotiation and fairness, while all the above is achieved by
DECLOAK.

Ekiden [1] decouples the consensus, execution, and key
management to different nodes, where the last two kinds of
nodes hold TEEs. However, users and executors’ TEE do not
hold data availability as they cannot access the on-chain states
independently without requesting key management TEEs. Eki-
den also proposes a two-phase protocol to achieve atomicity,
which delivers the outputs’ keys to users off-chain when the
outputs have been committed on-chain. DECLOAK, differently,
achieves data availability for both users and executors’ TEEs,
by introducing a novel data commitment subprotocol. The
subprotocol confidentially persists MPT commitments on the
blockchain with low gas cost. Each party or TEE can access
their data from the blockchain with only its known account
private key. Therefore, data availability is still guaranteed
even if the whole system is unavailable. DECLOAK also
achieves the atomicity with a similar two-phase protocol but
releases the outputs’ key to the blockchain for availability.
Moreover, DECLOAK adopts a different two-phase protocol,
∆-fair delivery subprotocol, in which each TEE interacts with
blockchain instead of communicating with parties or other
TEEs, to achieve delivery atomicity, conform confidential and
data availability, minimizing the dependence on other nodes.

Confide [31] and CCF [34] are independent permissioned
blockchains, rather than off-chain contract execution systems
as DECLOAK. Their TEE-enabled executors maintain a con-
sensus, e.g., RAFT, thereby tolerating only < 1/2 unavailable
executors, while DECLOAK tolerates all but one Byzantine
executors. They store contract data (e.g., code, states) by en-
crypting data with keys shared among TEEs, thereby achieving
data availability of only TEEs. However, if TEE executors are
unavailable, users will permanently lose their private data and
on-chain assets. Instead, DECLOAK achieves data availability
for both users and TEEs.

POSE [3] proposes an off-chain contract execution system
which features high system availability and no interaction
with blockchain in optimistic cases. It introduces a challenge-

response mechanism, ensuring the system’s availability even
if all-but-one executors are Byzantine. However, this mech-
anism failed in the multi-party scenario, which is solved by
DECLOAK . Moreover, similar to Ekiden, Confide and CCF,
users of POSE cannot access their states independently. As
POSE does not commit the off-chain state transition on-chain,
it fails to achieve atomicity like DECLOAK.
TEE-based smart contracts enabling MPCs. Choudhuri
et al. [33], Fastkitten [2], LucidiTEE [7], Cloak [5] and
DECLOAK are all TEE-based smart contract frameworks
enabling MPCs. However, only Cloak and DECLOAK fully
match the MPT properties, especially confidentiality and pub-
lic verifiability, as other work fails to commit or verify all the
off-chain MPC’s elements on-chain, e.g., state transitions or
party identities. Moreover, DECLOAK achieves more secure
properties and lower gas cost than Cloak [5].

Choudhuri et al. [33] are the first to achieve ∆-fairness
where ∆ ≈ 0 for general-purpose MPC. They require each
party to hold a TEE. Choudhuri et al. do not consider reading
states on-chain, punishing misbehaved nodes, or committing
states on-chain, thus being non-related to data availability,
financial fairness, or delivery atomicity. DECLOAK achieves
all the above properties where the ∆-fairness is comparable
without requiring any party to hold a TEE.

LucidiTEE [7] requires partial parties to hold TEEs for
delivery fairness. However, the ∆ of its fairness, i.e., the
period length in which the time of parties receiving outputs
distributes, equals the generation time of Proof of Publication
(PoP)1 [1], [2], [35]. PoP is for proving TEE that a key-
releasing transaction has been finalized on-chain, which costs
over 50 block intervals on Ethereum 2. Moreover, LucidiTEE
requires each party to send a transaction to join an MPT
or deposit, leading to O(n) transactions. Instead, DECLOAK

1Recall that PoP is a proof constructed for proving that a transaction has
been confirmed on-chain

2For achieving ≤ 0.001 false negative and false positive under an adversary
with ≤ 1/3 computing power of Ethereum

5

achieves ∆ of delivery fairness comparable to Choudhuri et al.
and other MPT properties with the cost of O(1).

Fastkitten [2] seeks to enable arbitrary multi-round MPC
on Bitcoin. It lets parties execute a transaction with private
inputs in TEEs and only submit new state commitments
with TEE signatures on-chain, sacrificing public verifiabil-
ity. It introduces a challenge-response mechanism to achieve
financial fairness but requires each party to send a deposit
transaction before each MPT, leading to O(n) transactions.
The mechanism also fails to work when the negotiation
phase and multiple TEEs exist. Instead, DECLOAK achieves
these properties additionally with data availability and delivery
fairness while costing only O(1) transactions.

Cloak [5] is the first to propose a one-deposit-multi-
transaction mechanism, where each honest party deposits
coins once globally and then joins MPTs infinitely. The
mechanism reduces its required on-chain transactions to O(1).
DECLOAK adopts the same one-deposit-multi-transaction with
Cloak. However, Cloak only commits the hash of MPT ele-
ments on-chain. Thereby their parties also cannot access their
states without TEE executors, i.e., lacking data availability.
Its single TEE model fails in achieving delivery fairness
and atomicity. These flaws are solved by DECLOAK without
sacrificing efficiency.
Cryptography-based smart contracts enabling MPCs.
Cryptography-based schemes usually combine MPC/HE with
ZKP to enable MPTs. They underperform DECLOAK in both
MPT properties and efficiency.

Without combining MPC/HE and ZKP, MPC/HE-based
work like [36]–[38] achieves great confidentiality of off-chain
multi-party programs but not targets public verifiability. ZKP-
based solutions achieve public verifiability of the program
but lack confidentiality inter parties. For example, Hawk [6]
requires a tight-lipped manager to collect parties’ secrets,
execute a contract, and generate the ZKP proof. Thus the
confidentiality of Hawk is limited. ZEXE [32] proves the
satisfaction of predicates by ZKP proof without revealing party
secrets to the public. However, generating the proof requires
a party to know all predicate’s secrets, thereby violating inter-
party confidentiality.

Combining MPC with ZKP, public auditable MPC (PA-
MPC) [10] is a new MPC primitive that achieves public
verifiability, allowing multiple parties jointly evaluate a pro-
gram and prove it to the public. Nevertheless, existing PA-
MPC primitives are not designed for committing data or
proving state transitions, e.g., MPCs expressed in Solidity
that operate both on- and off-chain inputs/outputs. Moreover,
they flaw efficiency and adversary models and fail to support
nondeterministic negotiation or achieve financial fairness prac-
tically. Specifically, [10] requires trusted setup or un-corrupted
parties. [39] is function-limited. [40] very recently achieves
general-purpose PA-MPC but only supports circuit-compatible
operations. None of the above solutions is for confidential
smart contracts or can punish adversaries. Instead, using the
same proof structure with Cloak, DECLOAK conforms to both
confidentiality and public verifiability. While the underlin-
ing MPC of [33], [36]–[38] requires honest-majority parties,
DECLOAK secures the system under a Byzantine adversary

corrupting all-but-one parties and all-but-one TEE executors.

IV. DECLOAK DESIGN

In this section, we first overview the system model, ad-
versary model, and system goals of DECLOAK. Then, we
overview DECLOAK protocol and highlight the challenges we
handled and corresponding countermeasures.

A. System Model
Figure 1 shows the framework of DECLOAK, i.e., a system

consisting of three components.
Blockchain (BC). A blockchain BC that can deploy and evalu-
ate Turing-complete smart contracts. BC satisfies the common
prefix, chain quality and chain growth [41], so it can handle
and reach consistency on new transactions continuously. A
Proof of Publication (PoP) scheme exists to prove TEEs that
a transaction has been finalized on BC. The above assumptions
are also adopted by [1], [2], [5], [35], and many well-known
blockchains conforms, e.g., Ethereum [21].
Parties (P). An array of parties P participating a specific MPT.
An honest party can access the latest view of the blockchain
BC and trust the data it reads from BC. The party trusts its
platform and running code but not others. An honest party also
trusts the integrity and confidentiality of all TEEs it attested.
An honest party never reveals its secrets to others except
attested TEEs.
DECLOAK network (DN). A network consists of multiple
TEE executors. We assume each executor E holds a TEE
and instantiate only one enclave in its TEE by Eeid ←
T EE.install(E) where the program E is shown in Al-

gorithm 2. Without ambiguity, we denote Eeid as E , which
refers to the enclave and the TEE simultaneously. An honest
TEE executor can access BC’s latest view and trust the data
it reads from BC. An honest executor also trusts its platform
and running code but not others. It also trusts the integrity
and confidentiality of attested TEEs. We denote the array of
all executors as E and all TEEs as E .

B. Adversary Model
We assume a Byzantine adversary presents in a DECLOAK

system. A Byzantine adversary can corrupt all-but-one parties
and all-but-one TEE executors. A corrupted party or executor
can behave arbitrarily, e.g., mutating, delaying and dropping
messages, but never break the integrity and confidentiality of
any TEE. Moreover, the adversary cannot interfere with the
communications among honest entities, e.g., the communica-
tions between honest parties and executors.

C. System Goals
Informally, we seek to achieve the following properties.

These properties are formally defined in Section VII-A1.
Correctness. The outputs of a succeeded MPT must be the
outputs of the MPT’s function applied to the fed inputs.
Confidentiality. The inputs and outputs of an MPT are always
confidential to their corresponding parties.

6

Public verifiability. The public, including BC, can verify the
correctness of the state transition caused by an MPT and its
commitments.
Data availability. No matter how the adversary behaves, if an
MPT succeeds, it holds that each honest party or TEE with
honest executor can independently access the plaintext of the
newest states.
Financial fairness. If over party is honest, then either (i) the
protocol correctly completes the MPT or (ii) all honest parties
know that negotiation of the MPT failed and stay financially
neutral or (iii) all honest parties know the protocol aborted,
stay financially neutral and at least one of misbehaved entities
must have been financially punished.
Delivery fairness. If over one TEE executor is honest, then
either (i) all parties know their corresponding plaintext return
values and new states within a ∆-bounded period, or (ii) no
one knows its plaintext.
Delivery atomicity. If over one TEE executor is honest, then
either (i) parties know plaintext new states or return values,
and the new states have been committed on-chain, or (ii) new
states are not committed, and no one obtains its plaintext.

D. Protocol Workflow

Figure 1 briefs the DECLOAK protocol πDECLOAK. We
assume all TEEs have been previously registered on-chain as
a TEE list E . Then, πDECLOAK starts to serve MPTs in four
phases, i.e., global setup, negotiation, execution, and delivery
phases. The global setup phase happens only once for any
party. Other three phases happen for each MPT.

• (0) Global setup phase: All parties and TEEs deposit some
coins to the network account adE on BC, where the account’s
private key is shared among all registered TEEs.

• (1) Negotiation phase: A party sends an MPT proposal p
to the first TEE E ∗ in the registered TEE list to initiate an
MPT. Upon receiving the proposal, the TEE E ∗ starts a non-
deterministic negotiation subprotocol Procnneg. Specifically,
the E ∗ signs and broadcasts the proposal to all parties. If
any party wants to join or is required by the p, it responds
with an acknowledgement to E ∗. The acknowledgement is
essentially a signature of the party against the proposal. The
E ∗ keeps collecting parties’ acknowledgements. When the
collected acknowledgements match the settlement condition
of the negotiation phase (e.g., the number of parties exceeds
the number specified by p), E ∗ settles the proposal, deducts
parties’ collaterals from their coins cached in E ∗, and
broadcasts the settled proposal p′ to all parties.

• (2) Execution phase: Upon receiving p′, each party involved
submits its signed plaintext inputs (i.e., parameters) to E ∗.
E ∗ first reads old states on BC with their PoP3, then
evaluates the MPT’s function to obtain the outputs (i.e.,
return values and new states) inside.

• (3.1-3.2) Delivery phase: E ∗ starts a ∆-fair delivery sub-
protocol Procfdel. First, it follows a novel data commitment
subprotocol Procdcmt to generate one-time symmetric keys
to compute the commitments of the outputs and publish

3We use the same PoP as [2], [5], [35]

the commitments on BC with the ciphertext of the keys
(encrypted by a key shared among TEEs). Upon the commit-
ments being confirmed, each E ∈ E independently verifies
the confirmation, obtains the symmetric keys on BC, and
then sends a transaction to reveal the committed outputs to
each party respectively.

If misbehaviours occur during the above phases, we devise a
novel challenge-response subprotocol Procrcha to identify and
punish the misbehaved entities.

Design Idea and Workflow

The workflow of Cloak, a development framework of general-purpose confidential smart contract

DeCloak Network

Enclave

…

Executor
Multi-Party Programs

1 negotiate
and lock
deposits

0 register
and deposit

3.2 unlock
deposits
and reveal

($)

Parties

…

coins

2 submit
inputs and
execute

e.g., Ethereum.

Blockchain

3.1 verify
and commit

Figure 1. The framework and workflow of DECLOAK.

E. Design Challenges and Highlights

1) Achieve data availability of both TEEs and parties
The challenge here is how to (i) achieve the data avail-

ability of both parties and TEEs and (ii) harmonize the data
confidentiality with the subprotocols for delivery atomicity and
fairness. We introduce a novel data commitment subprotocol
Procdcmt based on ECDH to tackle these challenges. Specifi-
cally, we require all entities to commit Pi’s private data di on
blockchain in the following structure cdi .

cdi := [enckdi
(di),enckie(kdi),Pi]

kdi denotes a one-time symmetric key for encrypting di. kie
denotes generated symmetric key generated shared among Pi
and all TEEs, kie← ecdh(ski, pkE) and kie← ecdh(skE , pki).
Consequently, cf., Section II-C, for (i), each party Pi and all
TEEs can independently obtain kie without interacting with the
other. And Pi needs only to hold its own private key ski to ac-
cess/operate all its commitments on-chain. For (ii), DECLOAK
first releases c∗di

, i.e., cdi without enckie(kdi), but with a extra
kie’s ciphertext enckE (kie) where kE ← ecdh(skE , pkE). So
each TEE can independently obtain kE to decrypt kie as they
share the network account (skE , pkE ,adE). Then, each TEE
releases the missed enckie(kdi) to BC only when the new state
commitments have been finalized, achieving atomicity and
fairness. Notably, without the ability to obtain kE , an adversary
neither can decrypt a corrupted parties’ kie,kdi and further di
during the waiting period of confirmation, nor decrypt honest
parties’ kie to break the confidentiality, although kE is shared
among different MPTs

7

2) Achieve delivery fairness
When the specified TEE executor evaluated the MPT inside

its TEE E ∗, E ∗ does not release the output immediately.
Instead, E ∗ first follows the data commitment subprotocol
to encrypt the outputs, then sends a transaction T Xcmt to
publish the incomplete output ciphertext (e.g., c∗di

) and their
keys’ ciphertext (e.g., the ciphertext of kie) on-chain. The
keys’ ciphertext can be decrypted by all TEEs independently.
However, each TEE obtains the keys and releases the missing
party of the released output ciphertext (e.g., enckie(kdi)) only
when T Xcmt has been finalized on-chain. Since we assume the
blockchain is ideally available, all honest TEE executors can
feed the PoP of T Xcmt to their TEEs. Therefore, if at least
one honest executor exists, parties communicating with all
executors can simultaneously obtain the keys to decrypt the
output ciphertext. We denote the above procedure as ∆-fair
delivery subprotocol, Procfdel.

3) Resist Byzantine adversary with minimal transactions
This paper proposes a novel challenge response subprotocol

Procrcha. At a high level, Procrcha is designed with the fol-
lowing idea: when an honest party does not receive protocol
messages off-chain from the specified TEE E ∗, it publicly
challenges E ∗ with the proposal p on-chain. E ∗ can only
avoid being punished if it can respond with expected outputs or
prove that the problem is caused by some misbehaved parties
rather than itself. Specifically, an MPT proposal only has
three possible results: (i) NEGOFAILED, meaning the negotiation
of the proposal failed; (ii) COMPLETED, meaning the MPT
succeeded (iii) ABORTED, i.e., some entities among parties and
the specified executor misbehaved, making the MPT aborted.
Therefore, the challenged E ∗ needs to respond with one of
the following three results to prove its honesty: (i) sending a
transaction T X f neg to prove that the negotiation of the MPT
failed; (ii) sending a transaction T Xcom to complete the MPT
and release its outputs; (iii) sending a transaction T XpnsP to
prove that it cannot complete the MPT as expected because
some parties misbehaved after the negotiation succeeded rather
than itself. If none of the above transactions can be sent, E ∗

will be punished. However, while (ii) is inherent in the success
of MPT, how to achieve (i) and (iii) becomes challenging. To
achieve (i), we require each proposal p to specify a block
height hneg to notify when the negotiation phase is expected
to finish. Then, E ∗ can send a T X f neg to fail the proposal on-
chain if it verifies that the collected acknowledgements from
both off-chain ack and on-chain TXack before hneg-th block
cannot satisfy the settlement condition. To achieve (iii), when
E ∗ cannot complete the MPT, E ∗ needs to challenge those
misbehaved parties to prove that the reason is some parties
did not submit their inputs rather than itself.

V. DECLOAK PROTOCOL

This section details the DECLOAK protocol πDECLOAK.
Given an array of parties P, a blockchain BC and a DECLOAK
Network DN with |P| = n and |E| = |E| = m. We assume
a DECLOAK contract V (Algorithm 1) has been deployed
on BC, and all TEEs have been registered in V as a list
E . A common TEE network account (skE , pkE ,adE) has

been synchronized among all TEEs. Each party Pi has an
account (ski, pki,adi), referring to the private key, public key
and address of the account, respectively. As each party Pi
is identified by its address, we indiscriminately refer Pi to
adi. For conciseness, we simplify T EE.resume(E , f unc||in)
as E .func(in) to express calling func of the TEE E with
inputs in. Implicitly, parties always Σ.verify the messages
received from E .

πDECLOAK is shown in Figure 2. We use di to denote the
private data of Pi (e.g., xi,si,ksi), d to denote an array [di|i∈[n]]
including all di from n parties (e.g., x,s,ks). We let Hdi denote
hash(di) and Hd denote hash([di|i∈[n]) (e.g., Hcx denotes the
hash of the parameter commitment array hash([cxi |i∈[n])).

A. Global Setup Phase

Before evaluating any MPT, each party Pi is supposed to
register their account public key pki and deposit some coins
with amount Qi to the DECLOAK contract V (Algorithm 1).
We stress that each party only needs to do it once.

B. Negotiation Phase

An MPT is started from its negotiation phase, where
DECLOAK uses the nondeterministic negotiation subprotocol
(Procnneg) to guide parties to reach an agreement on an MPT
proposal. In detail, Procnneg proceeds in two steps.

1.1: A party who wants to call an MPT f sends an MPT
proposal p ← (H f ,HP ,q,hneg) to the first TEE E ∗ in the
registered TEE list, i.e., E ∗ = E[0], to initiate an MPT f .
We call E ∗ as the specified TEE. Sending proposals to other
TEEs will be rejected by the TEEs. P denotes a policy of
f , capturing the settlement condition of the negotiation.4 q
denotes the collateral required for joining the proposed MPT.
hneg denotes that the proposal p is expected to be negotiated
before the block height hneg. Then, E ∗ computes hash(p)
to be the proposal id idp and broadcasts a signed (idp, p) to
parties.

1.2: Upon receiving (idp, p), each Pi interested in the MPT
autonomously responds with a signed acknowledgement acki
to E ∗. The E ∗ receiving acki knows Pi’s intent of joining the
proposal idp. E ∗ keeps collecting each party’s acknowledge-
ment acki until the acknowledgements match the settlement
condition5 in P . Then, E ∗ constructs a settled proposal p′ that
expands p with the settled parties’ addresses P. Meanwhile,
E ∗ locks q collateral from its and parties’ cached on-chain
coin balances, ensuring that any involved entity has enough
collateral to be punished when it misbehaves. Then, E ∗

broadcasts (idp, p′) to notify the involved parties.
Otherwise, if E ∗ does not collect satisfied acknowledge-

ments, a challenge-response subprotocol Procrcha in sec-
tion V-E will be triggered to identify misbehaviours.

4Please refer [5] for more details of P .
5Settlement condition of negotiation is flexible, e.g., the number of parties

exceeds a specified threshold.

8

DECLOAK Clients (P) DECLOAK Network (DN f ,P) DECLOAK Blockchain (BCV ,V)

↑ 1.1

↑ 1.2

↑ 2

↑ 3.1

↑ 3.2

f ailNegotiation

challengeParties

punishParties

+ generateIDp

negotiate

execute

commit

complete

Global
setup
phase

Negotiation
phase

(Procnneg)

Execution
phase

Delivery
phase

(Procfdel)

✓

✓

✓

send T Xdepi ← V .deposit(Qi)

initializes p← (H f ,HP ,q,hneg)

sends p

generates idp← Hp

broadcasts (idp, p)

generates acki

sends (idp,acki)

generates p′← (H f ,HP ,q,hneg,P)
broadcasts (idp, p′)

sends T X f neg← V . f ailNegotiation(idp)

hneg

sends T XchaT ← V .challengeT EE(p)

sends T Xacki ← V .acknowledge(idp,enckie (acki)))

if Pj ∈ P∗M ⊂ P fail to submit inputs
send T XchaP← V .challengeParties(idp,P∗M)if Pi ∈ P∗M is challenged

ini← (xi,kxi)

sends T XresPi ← V .partyResponse(idp,enckie (ini))

checks PoPchaT , reads T XchaT and TXack

checks PoPresP and reads T XresP

if P′M ⊂ PM still fail to submit
send T XpnsP← V .punishParties(idp,PM)

generates ini← (xi,kxi)

sends (idp, ini) checks PoPs and read cs, pki

s′,r← fP (s,x)
generate ks′ ,kr and ek ← enckE (ks′ ,kr)

generate cxi ← [enckxi
(xi),enckie (kxi),Pi]

generate c∗s′i
← [encks′i

(s′i),0,Pi]

generate c∗ri
← [enckri

(ri),0,Pi]

generate proo f ← [Hcs]

send T Xcmt ← V .commit(idp, proo f ,cx,c∗s′ ,c
∗
r ,ek)

read PoPcmt , decrypt ek

broadcast T Xcom

send T Xcom←
V .complete(idp, [enckie (ks′i

)|i∈[n]], [enckie (kri)|i∈[n]])
hneg + τcom

sends T XpnsT ← V .punishT EE(idp)

Figure 2. The DECLOAK protocol πDECLOAK . DN f ,P denotes a DECLOAK Network in which all executors hold TEEs with deployed f ,P .
BCV denotes a blockchain with deployed DECLOAK contract V . Procnneg and Procfdel denote the nondeterministic negotiation, and ∆-fair
delivery subprotocols, respectively. Double dashed arrows denote reading BC and double arrows denote writing BC. Orange arrows denote
challenge-response messages. Other arrows denote off-chain communications in secure channels. Specifically, messages sent by parties are
signed by parties and encrypted by kie of DN, where kie ← ecdh(ski, pkE). All messages broadcast by DN are plaintext in default and
signed by skE . For simplicity, we omit to mark out the ciphertext of messages that parties are sending to DN, but mark the ciphertext
explicitly in each transaction sent to BC.

9

C. Execution Phase
In this phase, E ∗ collects plaintext inputs from parties and

executes f to obtain outputs inside TEE.
2: Upon receiving (idp, p′), each party Pi knowing they are

involved in the settled proposal p′ feeds their inputs (i.e.,
parameters xi) to E ∗. The E ∗ keeps collecting parties’ inputs
and reads old states s from BC. If all involved parties’ inputs
are collected, E ∗ executes f (s,x) to obtain the MPT outputs
(i.e., return values r and new states s′) inside. Then, E ∗ goes
to the step 3.1.

Otherwise, if some parties do not submit their inputs as
expected, Procrcha will identify them and punish them. We
defer the detail in section V-E.

D. Delivery Phase
This phase adopts an ∆-fair delivery subprotocol (Procfdel)

to reveal the plaintext outputs (i.e., s′i,ri) to corresponding
parties in a ∆-bounded period. Procfdel proceeds in two steps.

3.1 E ∗ generates two arrays of symmetric keys ks′ ,kr to
compute the commitments of new states and return values s′i,ri,
i.e., cs′i

,cri , and generates a proo f ← [Hcs]. The transaction
with proo f signed by E ∗ can prove the MPT-caused state
transition. Then, E ∗ sends a commit transaction T Xcmt ←
V .commit(idp, proo f ,c∗s′ ,c

∗
r ,ek) to commit the outputs on-

chain. We note that the published c∗s′ ,c
∗
r do not include the

ciphertext of ks,kr so that parties cannot reveal the commit-
ments of s′,r. Instead, E ∗ encrypts the keys with kE , where
kE ← ecdh(skE , pkE), and attaches the obtained ciphertext
ek ← enckE (ks′ ,kr) in T Xcmt . So when T Xcmt is confirmed,
each E ∈ E can read ks′ ,kr on-chain without interacting with
others. Moreover, the proo f in T Xcmt proves the validity of
state transition caused by the MPT f . V will validate the
proo f and lock the on-chain states corresponding to old and
new states, which signals the acceptance of the state transition
and prevents its corresponding on-chain states from being
updated by other concurrent MPTs before this MPT completes.

3.2: When T Xcmt becomes confirmed on-chain, each E ∈ E
feeds the PoPcmt (The PoP of the transaction T Xcmt which is
an enough long and timely block sequence that contains T Xcmt
to prove T Xcmt has been finalized) of T Xcmt to its E . Each E
reads key array ks′ ,kr from the T Xcmt , then sends an transac-
tion T Xcom = V .complete(idp, [enckie(ks′i

)], [enckie(kri)]) to
add the ciphertext of ks′ ,kr to c∗s′ ,c

∗
r . The T Xcom signals the

COMPLETED of this MPT.
Here, the delivery fairness is achieved as follows: In 3.1,

each party Pi has received the incomplete output commitments
c∗s′ ,c

∗
r but cannot decrypt them without corresponding ks′i

,kri .
In 3.2, each E first verifies PoPcmt to ensure that MPT outputs
have been committed on BC. Then, each E sends a T Xcom
to complete the protocol with COMPETED. Since parties can
directly communicate with all E to obtain T Xcom, they can
obtain the ks,kr within the network latency ∆, as long as at
least one E ∈ E honestly respond with T Xcom. Otherwise, if
T Xcmt is rejected by V , any E cannot feed valid PoPcmt to
its TEE E , implying that no TEE can release T Xcom to reveal
the plaintext outputs or complete the MPT before hneg +τcom-
th block. Therefore, DECLOAK guarantees the ∆-fairness of
delivery, where ∆ is the network latency of the blockchain.

E. Challenge-response Subprotocol

If in any phase one of the honest parties did not receive
TEE’s protocol messages as expected, the party can initiate an
challenge-response subprotocol Procrcha. Specifically, it sends
a challengeTEE transaction T XchaT to challenge the specified
TEE E ∗ on-chain publicly. The E ∗ being challenged can only
avoid being punished by successfully responding with one of
the following transactions:

• (i) T X f neg: If the hneg-th block has not been produced, the
TEE E ∗ should keep collecting ack, which parties from off-
chain channels send, and TXack, which are sent by parties
to the blockchain and accepted before the hneg-th block.
We note that the off-chain acki will be preferred to TXack.
This ensures that any party cannot benefit from resending
a sent off-chain acknowledgement on-chain, resending a
new acknowledgement on-chain different from its sent off-
chain acknowledge, or sending an acknowledgement on-
chain only. This effect guarantees that the default sending
acknowledgements off-chain is the best choice, no matter
whether a party is corrupted or not. If collected acknowl-
edgements cannot satisfy the settlement condition, E ∗ is
allowed to send a T X f neg to fail p on-chain, which finishes
the MPT as NEGOFAILED. In all other cases where the hneg-
th block has not been confirmed or the E ∗ has successfully
settled the proposal, E ∗ can’t release a T X f neg.

• (ii) T Xcom: If the negotiation phase succeeds and the MPT
completes, a T Xcom will be sent by one of E ∈ E to BC
inherently. T Xcom finishes the MPT as COMPLETED.

• (iii) T XpnsP: If the negotiation phase succeeds but the E ∗

cannot complete the MPT as expected, both parties and
E ∗’s executor E∗ can be misbehaved entities. Therefore,
to avoid being punished in default, E∗ should call its E ∗

to challenge parties publicly. Specifically, if E ∗ does not
receive some parties’ inputs, E ∗ marks these parties as
suspicious parties P∗M and returns P∗M to its host E∗. The
E∗ calls E ∗.challengeParties to send a T XchaP to
challenge P∗M on-chain. Honest parties in P∗M are supposed
to send a T XresP to publish the ciphertext of their inputs.
All published T XresP are required to be confirmed before
block height hneg + τresP. Otherwise, the late T XresP will be
regarded as invalid by E ∗. Upon the confirmation of the
hneg + τresP-th block, E ∗ reads the PoPresP of all TXresP.
If E ∗ successfully reads inputs of a party Pi ∈ P∗M from
its T XresPi , it removes Pi from P∗M . Otherwise, if PoPresP
shows that no T XresPi is published on-chain or the inputs
in T XresPi are still invalid, E ∗ retains Pi in P∗M . After that,
if P∗M becomes empty, meaning all inputs are collected, E ∗

goes to the step 2. Otherwise, if P∗M remains non-empty,
which means the misbehaviour of parties left is confirmed,
E ∗ marks these parties as PM . Then, E ∗ sends a T XpnsP.
T XpnsP calls punishParties to punish PM in finance and
signal the MPT with ABORTED.

If E ∗ being challenged by a party either fails (by T X f neg),
stops (by T XpnsP), or completes (by T Xcom) the MPT, anyone
can send a T XpnsT after the hneg +τcom-th block to punish E ∗

and signal the MPT with ABORTED.

10

VI. IMPLEMENTATION

While the design of πDECLOAK is chain-agnostic and TEE-
agnostic, here we introduce how we instantiate and prototype
DECLOAK.

A. DECLOAK Contract
We instantiate BC as Ethereum. Specifically, we implement

the DECLOAK contract (V), as shown in Algorithm 1, in
Solidity 0.8.10 [42]. V is constructed by the config of DN,
e.g., pkE ,adE , so that parties can authenticate and build secure
channels with E . Moreover, V provides functions to manage
the life cycle of each MPT. A party calls V .challengeTEE
by T XchaT to challenge the specified TEE, and signal the
negotiation as NEGOTIATED. When an MPT was evaluated, the
specified TEE E ∗ calls V .commit by T Xcmt to validate and
commit the outputs. Finally, a E calls V .complete by T Xcom
to release keys’ ciphertext and signal the MPT as COMPLETED.

B. DECLOAK Network
To construct DN, we instantiate each TEE E (Algorithm 2)

based on SGX [23]. Anyone with an SGX can instantiate and
register a E to become an executor E. The first registered E
generates the network account (skE , pkE ,adE) to initialize a
network DN. Then, other E must be attested by one of E in
DN to obtain the network account and join DN.

We express the program of an MPT f in Solidity 0.8.10 [42]
and port EVM [43] into SGX. P is expressed in JSON. It
specifies the settlement condition of the MPT and identifies
the parameters, states to read and write, and return values of
f , which is for TEE to know the I/O of the MPT. The hash
of both f and P are registered and updated on BC, while
their codes are provided by the MPT’s developers/initiators
and cached by E . Admittedly, P restricts the I/O of f to be
statically identified. However, this problem can be solved by
hooking EVM’s sstore and sload instructions [44], and we
leave it for future work.

VII. SECURITY ANALYSIS

A. Protocol Security
Here we formalize and prove our system goals. Recall P, E,

and E denote the party array, executor array and TEE array
of an MPT, respectively. We have |P| = n and |E| = |E| =
m. We define PH and EH as the honest entities in P and E,
respectively. PM and EM denote the malicious entities in P and
E, i.e., PM ← P\PH , EM ← E\EH . For convenience, we also
define P+← P∪E and P+

M ← PM ∪EM . Recall our adversary
model in Section IV, the Byzantine adversary A can corrupt
all Pi ∈ PM and Ei ∈ EM where |PM|< n and |EM|< m.

For DECLOAK protocol πDECLOAK, or simply π , we clas-
sically define the execution of π under the adversary A as
REALπ,A . And it’s formalized as follows. The inputs of an
execution include an n-party MPT f and its policy P , a
parameter array x, a parameter key array kx, an old state
commitment array cs, a party array P, a TEE array E , a deposit
array q and a coin balance array Q (|Q|= n+m. Qi|i<n denotes
the coin balance of Pi ∈ P pre-deposited to adE . Qn+i|i<m
denotes the pre-deposited coin balance of Ei ∈ E). The outputs

Algorithm 1: DECLOAK contract (V)

// This contract is constructed by the network
config pkE ,adE and a TEE list E. adE is the
network account for managing coins deposited
by parties. For simplicity, we ignore the
register and deposit functions here.

1 Function challengeTEE(p)
// called by T XchaT from one of parties

2 idp← hash(p)
3 require(prsls[idp] = /0)
4 prsls[idp].{q,hneg,τcom,E }← p.{q,hneg},τcom,E[0]
5 prsls[idp].sta← PROPOSED

6 Function acknowledge(idp,enckE (acki))
// called by T Xacki from parties

7 require(BC.getHeight()< hneg)

8 Function failNegotiation(idp)
// called by T X f neg from the specified TEE

9 require(msg.sender = prsls[idp].E)
10 prsls[idp].sta← NEGOFAILED

11 Function challengeParties(idp,P∗M)
// called by T XchaP from the specified TEE

12 Function partyResponse(idp,enckE (in))
// called by T XresPi from parties

13 require(BC.getHeight()< hneg + τresP)

14 Function punishParties(idp,PM)
// called by T XpnsP from the specified TEE

15 require(msg.sender = prsls[idp].E)
// update coins for punishment

16 for Pi ∈ PM do
17 coins[Pi]← coins[Pi]−q
18 prsls[idp].sta← ABORTED

19 Function commit(idp, proo f ,cx,c∗s′ ,c
∗
r ,ek)

// called by T Xcmt from the specified TEE
20 require(msg.sender = prsls[idp].E)
21 require(verify(proo f , Hcs)) // match old states

22 Function complete(idp, [enckie (ks′i
)|i∈[n]], [enckie (kri)|i∈[n]])

// called by T Xcom from any registered TEE
23 require(msg.sender ∈ E)
24 Hcs ← proo f .Hcs′ // set new states
25 prsls[idp].sta← COMPLETED

26 Function punishTEE(idp)
// called by T XpnsT from anyone

27 require(prsls[idp] ̸= /0 and BC.getHeight()> hneg + τcom)
28 require(prsls[idp].sta /∈

{NEGOFAILED,ABORTED,COMPLETED})
29 coins[prsls[idp].E]← coins[prsls[idp].E]−q
30 prsls[idp].sta← ABORTED

of π include a new coin balance array Q′ after the execution,
new state array s′, new state key array ks′ , return value array
r, return value key array kr, and the commitment array of new
states cs′ , return values cs′ , and parameters cx, and proo f of
the MPT-caused state transition.

Q′,s′,ks′ ,r,kr,cs′ ,cr,cx, proo f ,sta

← REALπ,A (Q, f ,x,kx,cs,P,E,q)1) Security definitions
We formalize our security goals as follows.

Definition 1 (Correctness). There is a negligible function ε

that for any output of REALπ,A (Q, f ,x,kx,cs,P,E,q) where
sta = COMPLETED∣∣Pr

[
(s′,r,cs′ ,cr,cx, proo f) = mpt(f ,x,cs,P)

]
−1

∣∣≤ ε

Note that mpt in Algorithm 3 contains the correctness require-
ment of an MPT.

11

Algorithm 2: DECLOAK enclave program (E)

// Each E has obtained the network config and
cached its and parties’ coin balances by
synchronization. The config includes a
secure parameter κ, a checkpoint bcp of BC,
and the network account (skE , pkE ,adE).

1 Procedure generateIDp(p)
// check this is the specified TEE

2 if sel f ̸= BC.E[0] or cacheCoins.lock(sel f , q) ̸= 1 then abort
3 idp← hash(p)
4 return (idp, p)
5 Procedure negotiate(idp,ack)
6 if status = NEGOTIATED then return (idp, p′)
7 if status ̸= /0 or conform(ack,P) ̸= 1
8 or cacheCoins.lock(P, q) ̸= 1 then abort
9 p′,status← (p.{H f ,HP ,q,hneg}), NEGOTIATED

10 return (idp, p′)
11 Procedure failNegotiation(idp,T XchaT ,PoPchaT)
12 if status ̸= /0 or veriPoP(bcp,PoPchaT ,T XchaT) ̸= 1 then abort
13 if PoPchaT .getComfHeight()> p.hneg then
14 TXack ← all PoPchaT .T Xacki before p.hneg
15 ack ← ack∪TXack.ack
16 if conform(ack,P) = 1 then abort
17 cacheCoins.unlock(sel f , q)
18 return TX f neg(idp)

19 Procedure execute(idp, in,PoPs)
20 if status ̸= NEGOTIATED then abort
21 P∗M ← P
22 for xi,kxi in in.{x, kx}
23 P∗M ← P∗M\{Pi}
24 if |P∗M |> 0 then return (idp,P∗M)

// evaluates f (x) on states s
25 s′,r← f (PoPs.s,x)
26 bcp← PoPs.getLastComfBlock()
27 status← EXECUTED

28 Procedure commit(idp)
29 if status ̸= EXECUTED then abort
30 ks′ ,kr ← Gen(1κ)
31 ek ← enckE (ks′ ,kr)
32 proo f ← [HPoPs .cs]
33 cxi ← [enckxi

(xi),enckie (kxi),Pi]

34 c∗s′i
,c∗ri
← [encks′i

(s′i),0,Pi], [enckri
(ri),0,Pi]

35 return T Xcmt(idp, proo f ,cx,c∗s′ ,c
∗
r ,ek)

36 Procedure challengeParties(P∗M)
37 if status ̸= NEGOTIATED then abort
38 if |P∗M |> 0 then
39 return TXchaP(idp,P∗M)

40 Procedure punishParties(TXchaP,TXresP,PoPresP)
41 if status ̸= NEGOTIATED or

veriPoP(bcp,TXchaP,PoPresP) ̸= 1 then abort
42 PM ← P∗M
43 for Pi ∈ P∗M do
44 if xi,kxi ← T XresPi .{xi,kxi} then
45 PM ← PM\{Pi}
46 if |PM |> 0 then
47 return T XpnsP(idp,PM)

48 Procedure complete(T Xcmt ,PoPcmt)
49 if status ̸= NEGOTIATED or veriPoP(bcp,T Xcmt ,PoPcmt) ̸= 1

then abort
50 status← COMPLETED
51 cacheCoins.unlock(P∪ sel f , q)
52 return T Xcom(idp, [enckie (ks′i

)|i∈[n]], [enckie (kri)|i∈[n]])

Definition 2 (Confidentiality). For any adversary A cor-
rupting P+

M , the output of any REALπ,A (Q, f ,x,kx,cs,P,E,q)
is such that: There is a negligible function ε ensuring that
∀x∗1,s∗1,s

′∗
1 ,r
∗
1,x
∗
2,s
∗
2,s
′∗
2 ,r
∗
2 and ∀Pi ∈ PH :

Algorithm 3: MPT evaluation function
Input: An n-party MPT f , a parameter array x, an old state

commitment array cs, and a party array P.
Output: A new state array s′, return value array r, new state

commitment array cs′ , return value commitment
array cr, parameter commitment array cx, and a
proo f .

1 Function mpt(f ,x,cs,P)
2 foreach csi in cs
3 assert csi = [encksi

(si),enckie(ksi),Pi]

4 s′,r← f (s,x)
5 ks′ ,kr← Gen(1κ)
6 cs′i ← [encks′i

(s′i),enckie(ks′i),Pi]

7 cri ← [enckri
(ri),enckie(kri),Pi]

8 cxi ← [enckxi
(xi),enckie(kxi),Pi]

9 proo f ← [Hcs]
10 return (s′,r,cs′ ,cr,cx, proo f)

|Pr[xi,si = x∗1,s
∗
1]−Pr[xi,si = x∗2,s

∗
2]| ≤ ε

and∣∣∣Pr[s′i,ri = s
′∗
1 ,r
∗
1]−Pr[s′i,ri = s

′∗
2 ,r
∗
2]
∣∣∣ ≤ ε

Definition 3 (Data availability). For any adversary A cor-
rupting P+

M , the output of any REALπ,A (Q, f ,x,kx,cs,P,E,q)
is such that: There is a negligible function ε satisfies that if
sta = COMPLETED, all following statements must be true.

(a) ∀Ei ∈ EH , there is a polynomial function fEi for its TEE

that s′i = fEi(skE ,Pi,cs′i
)

(b) ∀Pi ∈ PH , there is a polynomial function fPi

that s′i = fPi(ski, pkE ,cs′i
)

Definition 4 (Financial fairness). For any adversary A cor-
rupting entities from P+

M in which PM ⫋ P, the output of
any REALπ,A (Q, f ,x,kx,cs,P,E,q) is such that one of the
following statements must be true:

(i) sta ∈ {NEGOFAILED,COMPLETED}, ∀Pi ∈ P+ : Q′i ≥ Qi

(ii) sta = ABORTED, ∀Pi ∈ P+
H : Q′i ≥ Qi and

∑
j∈P+

M

Q′j < ∑
j∈P+

M

Q j

Definition 5 (Delivery fairness). For any adversary A cor-
rupting P+

M where EM ⫋E, there is a negligible function ε that
for any REALπ,A (Q, f ,x,kx,cs,P,E,q), one of the following
statements must be true:

(i) s′,r = /0, /0
(ii) s′,r, ̸= /0, /0, and the following two hold simultaneously :

(a) ∀Pi ∈ PH :
∣∣∣ts′i − tri

∣∣∣≤ ∆

(b) ∀Pi,Pj ∈ PH :
∣∣∣ts′i − ts′j

∣∣∣≤ ∆ and
∣∣tri − tr j

∣∣≤ ∆

Definition 6 (Delivery atomicity). For any adversary A
corrupting P+

M where EM ⫋ E, there is a negligible function
ε that for any REALπ,A (Q, f ,x,kx,cs,P,E,q), one of the
following statements must be true:

(i) sta ∈ {NEGOFAILED,ABORTED}, and cs′ ,s′,r = /0, /0, /0
(ii) sta = COMPLETED, and cs′ ̸= /0, s′ ̸= /0, and r ̸= /0

12

2) Security proof
We claim that the following theorem holds. As the proof of

correctness, confidentiality, and public verifiability are native
and intuitive, here we seek to prove data availability, financial
fairness, delivery fairness, and delivery atomicity.

Theorem 1 (Formal statement). Assume a EUF-
CMA secure signature scheme, a IND-CCA2 encryp-
tion scheme, and a hash function that is collision-
resistant, preimage and second-preimage resistant, a
TEE emulating the TEE ideal functionality and a
blockchain satisfies common prefix, chain quality and
chain growth, and has a PoP scheme, πDECLOAK holds
correctness, confidentiality, public verifiability, data
availability, financial fairness, delivery fairness, and
delivery atomicity.

Proof of data availability. According to Algorithm 1, when
sta = COMPLETED, the new state commitments cs′ must be
published on BC. Recall the commitment subprotocol Procdcmt
where each new state commitment is as follows. We construct
a polynomial function in Algorithm 4. With the function, any
E of E ∈EH can restore cs′i

by restoreStates(skE , pki,cs′i
),

hence satisfying (a), and any Pi ∈ P can construct cs′i
by

restoreStates(ski, pkE ,cs′i
), satisfying (b). Therefore, the

data availability holds.
cs′i
← [encks′i

(s′i),enckie(ks′i
),Pi]

Algorithm 4: States restoration function
Function restoreStates(sk, pk,cs′i)

kie← ecdh(sk, pk)
ks′i ← deckie(cs′i [1])
s′i← decks′i

(cs′i [0])
return s′i

Proof of financial fairness. Here we prove that in all possible
final sta, the financial fairness of πDECLOAK holds. First, we
consider the Negotiation phase.

Lemma 2. If sta = NEGOFAILED, the statement (i) of
the financial fairness property holds.

Proof: There is only one case that sta= NEGOFAILED: T X f neg
is confirmed on BC after Procnneg. This happens when the
collected ack from both on-chain and off-chain channels
cannot satisfy the settlement condition of MPT proposal or
∃Pi ∈ P∪E[0] holds that Qi < q. No matter what reasons cause
the T X f neg, the T X f neg accepted by V will be irrevocable.
As we assume that BC satisfies the common prefix, chain
quality and chain growth, the confirmation of T X f neg is also
irrevocable. Consequently, since both E[0] and T X f neg do not
change Q, i.e., the (i) Q′i ≥ Qi holds.

Lemma 3. If sta = COMPLETED, then the statement (i)
of the financial fairness property holds.

Proof: According to Algorithm 1, the protocol outputs sta=
COMPLETED iff a transaction T Xcom is contained on BC before
the hneg+τcom-th block. As T Xcom does not update Q, ∀Pi ∈P+

the Q′i = Qi ≥ Qi holds.
Next, we show that financial fairness also holds even if an

MPT fails by ABORTED after a successful Negotiation phase.

Lemma 4. If sta = ABORTED, then the statement (ii) of
the financial fairness property holds.

Proof: There are two cases when sta = ABORTED:
• (i) Before the hneg + τcom-th block, T XpnsP(idp,PM) is

published on BC, and later been confirmed.
• (ii) After the hneg+τcom-th block, T XpnsT (idp) is published

on BC, and later been confirmed.
We first consider the case (i) where ∃Pj ∈ P does not

provide inputs in j after the negotiation succeeded. According
to Algorithm 2, the E ∗ releases a transaction T XpnsP(idp,PM)
iff E∗ calls the E ∗.punishParties with a PoPresP which proves
that Pj ∈ PM|PM ̸= /0 did not provide their inputs even though
they were challenged by a T XchaP. The T XpnsP deducts coins
of Pi ∈ PM by the collateral qi. In other word, for Pi ∈ PM ,
it holds that Q′i = Qi − qi. Since Qi > qi, which has been
ensured by Procnneg, PM ̸= /0, and PM ∈ P+

M , it holds that
∑ j∈P+

M
Q′j < ∑ j∈P+

M
Q j. Notably, no malicious entities earned

coins in this case.
Second, we consider the case (ii) which indicates that T Xcom

fails to be contained before the hneg+τcom-th block. When the
timeout transaction T XpnsT is posted on BC, p′ will be marked
as ABORTED, and E∗ will be punished by collateral q. As and
E∗ ∈ P+

M , it holds that ∑ j∈P+
M

Q′j < ∑ j∈P+
M

Q j.

Lemma 5. When πDECLOAK terminates, it must hold
sta ∈ {NEGOFAILED,ABORTED,COMPLETED}.

Proof: As we assume A corrupts P+
M where PM ⫋ P, there

must be PH ̸= /0. Say a P∗ ∈ P sending a proposal p to E ∗.
If both P∗ and E∗ are malicious, the E∗ may not feed p into
its E or not broadcast (idp, p) to PH after the Step 1.1, and
P∗ does not challenge it on BC. In this case, Pi ∈ PH or BC
is unaware of the existence of p, nor being involved, thus
meaningless. If P∗ or E∗ is malicious, the honest E∗ will
broadcast p to all Pi ∈ PH or the honest P∗ will challenge
with p on-chain. Either case above ensures that ∃Pi ∈ PH
will be aware of the p to start with πDECLOAK. Then, if all
parties and executors are honest in the following phases, the
MPT corresponding p must succeed, and a T Xcom will be sent,
which leads to sta← COMPLETED. Otherwise, if any reason fails
the T Xcom, there must be ∃Pi ∈ PH challenge E ∗ with p by
T XchaT , making BC also aware of p, i.e., sta← PROPOSED.
Then, if the adversary stops misbehaving after T XchaT , there
must be a T Xcom being released, leading to sta← COMPLETED.
Otherwise, as V authorizes anyone to punish E∗ after the
hneg+τcom-th block, E∗ must prove its honesty to avoid being
punished. Specifically, E∗ either feeds E ∗ the BC view to
prove the failure of negotiation to release T X f neg and set

13

sta← NEGOFAILED, or feeds E ∗ the BC view to prove that
parties being challenged fail to respond to release T XpnsP
and set sta← ABORTED. If none of T X f neg, T XpnsP, or T Xcom
happens, there must be ∃Pi ∈PH set sta← ABORTED by T XpnsT .
Therefore, it holds sta∈ {NEGOFAILED,ABORTED,COMPLETED}.
Proof of delivery fairness. As Lemma 5 holds, we prove
that the delivery fairness holds in all three final values of sta.

Lemma 6. If sta = NEGOFAILED, then the statement (i)
of the delivery fairness holds.

Proof: As proved in Lemma 2, sta= NEGOFAILED only when
there is a T X f neg being successfully confirmed on the BC after
the negotiation phase. Consequently, E ∗ never proceeds with
the Execution phase. Therefore, ∀Pi ∈P obtain no outputs, i.e.,
s′,r = /0, /0.

Lemma 7. If sta = ABORTED, then the statement (i) of
the delivery fairness holds.

Proof: Recall A corrupts P+
M where EM ⫋ E. If T Xcmt is

released, there must be that ∃E j ∈ E releases a T Xcom which
sets sta = COMPLETED. However, according to the proof of
Lemma 4, if sta = ABORTED is true, πDECLOAK is terminated by
either T XpnsT or T XpnsP, meaning that T Xcmt is impossible to
be released while releasing T Xcmt is the condition of releasing
outputs. Therefore, it holds that s′,r = /0, /0.

Lemma 8. If sta = COMPLETED, then statement (ii) of
the delivery fairness holds.

Proof: sta = COMPLETED only when T Xcom is released and
accepted by BC, which requires that T Xcmt has been confirmed
on BC. Recall that we assume A corrupts P+

M where EM ⫋ E
and BC is ideally accessible. Say T Xcmt is confirmed on BC
in a wall-time tcom, then the time of all honest entities in
P+ knowing that T Xcmt has been confirmed is also tcom, i.e.,
ti← tcom|ti∈t+com

. There must be ∃E ∈ E independently validate
PoPcmt of T Xcmt and read ks′ ,kr from T Xcmt to construct and
release a T Xcom. As Pi ∈ PH undisturbedly and independently
obtains T Xcom broadcasted by E ∈ E from BC network within
the network latency ∆, then we conclude that ts′ = tr and
∀Pi,Pj ∈ PH :

∣∣∣ts′i − ts′j

∣∣∣≤ ∆ and
∣∣tri − tr j

∣∣≤ ∆, i.e., the (a) and
(b) of (ii) are satisfied.
Proof of delivery atomicity. Recall that Lemma 5 enumerates
all possible three final statuses of sta. Lemma 6 and 7 prove
that the first two statuses hold s′,r = /0, /0, making releasing
T Xcom that sets cs′ impossible, thus conforming to the (i) of
delivery atomicity. Similarly, Lemma 8 proves the (ii) where
s′,r,cs′ must be released and confirmed if EM ⫋ E. Therefore,
the delivery atomicity holds.

B. Architecture Security

Here, we analyse the architecture security of DECLOAK by
considering its implementation.

We note that parties P are only required to send and receive
transactions from blockchain BC and exchange protocol mes-
sages with multiple TEEs E through their executors E in DN.
Parties in P can implement the client using entirely different
code bases, possibly using memory-safe languages like Rust
and Go. Hence, we focus on E in the following.

Although DECLOAK protocol specifies E ∗← E[0] to exe-
cute MPTs for simplicity. The executor can be verifiably and
randomly selected by other methods, such as verifiable random
functions [3], [45], which is an orthogonal problem. However,
we stress that the executor’s selection method does not impair
our system’s availability, as parties can always challenge the
selected executor on-chain by Procrcha. Recall that DECLOAK
involves multiple TEE executors E and their TEEs E . If
the selected executor is unavailable, it will be immediately
challenged by PH , punished by BC and replaced by the next
selected E in E to avoid single point failure. Nevertheless, in-
dustrial TEE executors usually have robust error-handling and
DDoS-resistant mechanisms. Procrcha should rarely happen in
practice. Meanwhile, since BC plays as a trusted anchor to
maintain E’s consistency, the goal of a EM reduces to exploit
the enclave program E at runtime, i.e., launching attacks by us-
ing well-defined interfaces of E . Specifically, while we assume
that TEE’s confidentiality and integrity hold, interface-based
attacks against TEEs, e.g., memory-corruption attacks and
side-channel attacks against SGX, keep coming out [46]–[48].
However, our design is TEE-agnostic and language-agnostic.
It’s easy to mitigate the above attacks by hardware-based
countermeasures [49], [50] including more advanced TEE
design [51] and software-based [52]–[54] including memory-
safety languages, e.g., Rust.

VIII. EVALUATION

Methodology and setup. To evaluate the effectiveness of
DECLOAK, we propose 3 research questions.
• Q1: What is its cost of enabling MPTs on a blockchain?
• Q2: Can it serve MPTs in various scenarios?
• Q3: How it compares to related work in evaluating MPTs?

The experiment is based on a server with Ubuntu 18.04, 32G
memory, and 2.2GHz Intel(R) Xeon(R) Silver 4114 CPU. The
memory used by TEE is set up to 200M.
Answering Q1. It costs 4.9M gas to deploy V to enable
DECLOAK on a blockchain. This cost is only once paid by
DECLOAK service provider, thereby is irrelevant. In the global
setup phase, a party pays 4.2k gas to deposit coins, which
happens once for each party, thus being acceptable.
Answering Q2. We evaluate DECLOAK on 5 contracts with
10 MPTs in different scenarios. They are all in Solidity, and
the number of involved parties varies from 2-11.

SupplyChain is a supply chain contract with 39 LOC. It has
one 2-party MPT, which allows suppliers to negotiate with
confidential bids off-chain, select a winner, update balances
and commit their new balances with a proof on-chain.

Scores is a contract in the education domain. It has 95
LOC and contains one 2-party MPT that allows students to
submit confidential answers, get their scores, and commit the
evaluation on-chain.

14

ERC20Token is an ERC20 contract in the DeFi domain mod-
ified for multi-party transfer. It has 55 LOC and contains two
2-party and one 3-party MPTs. These MPTs allow accounts
to jointly approve, transfer or transferFrom without revealing
their secrets off-chain, respectively, and commit on-chain.

YunDou is a real-world industrial digital asset contract,
technically an ERC20 token contract fine tuned for a novel
co-managed account. The contract has 105 LOC and contains
a 3-party, 2-party and 11-party MPTs, where we highlight the
11-party MPT allows account managers self-selectly vote to
transfer tokens without revealing their votes.

Oracle is a real-world Oracle contract customized for a
verifiable random number generation service. It has 60 LOC
and contains a 2-party and an 11-party MPTs, providing
functions for parties to negotiate and generate random numbers
in a joint and verifiable manner.

Table III shows the gas cost of all MPTs, which proves
that DECLOAK can evaluate MPTs, including which in real-
world contracts, in the cost comparable to classic DeFi or NFT
transactions on Ethereum.

Table III
AVERAGE ON-CHAIN COST OF MPTS ENDING AT DIFFERENT

STATUSES. FOR ProcRCHA OF AN MPT, WE ASSUME ALL PARTIES
INVOLVED ARE CHALLENGED

Status TX Gas Sum

- acknowledge (T Xacki) 26999
partyResponse (T XresPi) 34313

COMPLETED
commit (T Xcmt) 104568 215138complete (T Xcom) 110570

NEGOFAILED
challengeTEE (T XchaT) 131762 162325failNegotiation (T X f neg) 30563

ABORT
challengeTEE (T XchaT) 131762

211066challengeParties (T XchaP) 33786
punishParties (T XpnsP) 45518

ABORT
challengeTEE (T XchaT) 131762 185016punishTEE (T XpnsT) 53254

DeFi: ERC20: Transfer 65000
DeFi: Uniswap V3: Swap 184523
DeFi: Balancer: Swap 196625
NFT: OpenSea: Sale 71645
NFT: LooksRare: Sale 326897

Answering Q3. We analyze the gas and off-chain cost for
evaluating each MPT, respectively. We especially compare
the gas cost of DECLOAK with the most related two works,
Fastkitten [2] and Cloak [5].

On-chain cost of MPTs. Figure 3 shows the gas cost of
each MPT. Overall, DECLOAK reduces gas by 72.5% against
Fastkitten. Specifically, for six 2-party MPTs, DECLOAK costs
0.27-0.46X gas. For two 3-party and two 10/11-party MPTs,
the gas significantly reduces to 0.22-0.25X and 0.09-0.11X,
respectively. For Cloak, the cost of DECLOAK decreases by
65.6% in average. Specifically, DECLOAK costs 0.27-0.56X
gas against Cloak in 2/3-party MPTs, while just 0.17-0.22X
gas in 10/11-party MPTs. Therefore, DECLOAK enables a
more secure MPTs with lower on-chain cost. The on-chain
cost not only surpasses Cloak, but is comparable to typi-
cal DeFi/NFT transactions on Ethereum, e.g., NFT sale and

ERC20 swap. Moreover, as the number of parties grows, the
cost superiority of DECLOAK improves.

Off-chain cost of MPTs. All 10 MPTs complete in constant
2 transactions. Specifically, the negotiation, execution, and
delivery phases cost 0.32-1.71s, 0.29-0.81s, and 0.27-1.27s,
respectively. As Cloak’s negotiation phase takes 0.1-0.39s and
its execution and distribution phases take 0.26-0.71s, the off-
chain time cost of DECLOAK surpasses Cloak since we offload
more workload to the off-chain TEE. However, we stress that
both costs are ignorable in practically multi-party scenarios.

2-p 2-p 2-p 3-p 2-p 3-p 2-p 11
-p 2-p 10
-p

Multi-party transactions

0.0x104

50.0x104

100.0x104

150.0x104

200.0x104

250.0x104

Ga
s c

os
t

Fastkitten
Cloak
TXcmt
TXcom

Figure 3. The gas cost of DECLOAK. “Fastkitten” refers to the gas cost
sum of n+1 transactions for each MPT. Here we adapt the protocol
of Faskkitten to Ethereum. “Cloak” refers to the gas cost sum of its
2 transactions for each MPT. “TXcmt” and “TXcom” refers to gas
cost of T Xcmt ,T Xcom in πDECLOAK, respectively.

On-chain cost of MPTs with adversaries presented. Procrcha
terminates at ABORT in two scenarios, punishing parties or
the specified TEE. As shown in Table III, the costs of these
two scenarios are 211066 and 185016, respectively, which
reduce the cost of Cloak by 71.5% and 67.6%, respectively, or
69.6% on average. The main reason is that Cloak requires the
TEE to commit parties’ inputs and lock their collateral after
negotiation, which is expensive to 471494 on average. Instead,
DECLOAK offloads most collateral operations to the TEE and
reduces the inevitable commitment cost using calldata.

IX. OPTIMIZATION AND FINE-TUNING

A. Improve the Scalability of DECLOAK

1) Reduce gas cost in optimistic cases
Recall that serving a n-party MPT in optimistic scenarios

only involves 2 transactions, T Xcmt and T Xcom, leading to O(1)
transactions. We can adopt the following measures to further
reduce the optimistic cost of DECLOAK.
Reduce the pessimistic cost by batch processing. In the pes-
simistic scenarios, each MPT will trigger a challenge-response
submission (Procrcha) protocol. Each party being challenged
on-chain has to respond with their inputs independently. We
can involve an off-chain third-party service to collect parties’
responses and publish an aggregated T XresP to the blockchain.
In this way, even though a Procrcha is triggered, the on-chain
transaction complexity is still O(1). And combining with the
batch processing technique of MPT, the complexity of Procrcha
can furthermore reduce to O(1/m), where m is the number of
MPTs in a batch.
Trading system goals for efficiency and cheapness. By
intentionally sacrificing some system goals, DECLOAK can
further reduce its on-chain cost. First, we can drop data

15

availability to delete the last transaction T Xcom. Specifically,
in the delivery phase, TEEs will first send T Xcmt to commit
outputs on-chain. If the proo f in T Xcmt passes, V will accept
the state transition immediately. Then, upon T Xcmt being ac-
cepted and confirmed, TEEs will release the keys of the output
ciphertext in T Xcmt to parties by off-chain channels, rather
than sending a T Xcom. Consequently, the required transactions
of DECLOAK reduce to only 1, i.e., T Xcmt . However, in this
variant, parties need to keep all received keys to access their
plaintext states. Second, we can furthermore drop delivery
atomicity and delivery fairness to delete T Xcmt , meaning that
no transactions are required in the optimistic case. Specifically,
MPT involves reading on-chain inputs. If we delete T Xcmt ,
when the specified TEE obtains outputs, the blockchain needs
not to ensure the old states have not been mutated. This way,
the MPT outputs that TEE regard as valid cannot be accepted
by the blockchain, breaking the atomicity. Moreover, as we
cannot utilize the T Xcmt to ensure that output ciphertext can
be ideally delivered to all TEEs, delivery fairness is broken.

2) Reduce gas cost in pessimistic cases
In pessimistic scenarios, the challenge-response subprotocol

(Procrcha) is triggered. Each party being challenged on-chain
has to respond with their acknowledgements or inputs inde-
pendently. We can introduce an off-chain third-party service
to collect parties’ responses and publish an aggregated T XresP
to the blockchain. In this way, even though a Procrcha is
triggered, the on-chain transaction complexity is still O(1).
And combining with the batch processing technique of MPT,
the complexity of Procrcha can furthermore reduce to O(1/m),
where m is the number of MPTs in a batch.

3) Reduce storage cost
To minimize the trust of off-chain TEE network, DECLOAK

stores parties’ data commitments on BC and ensures the
corresponding plaintext are still accessible to parties even
without DECLOAK. This sounds indicating a high storage cost.
However, as demonstrated in Section VIII, the storage cost is
acceptable by using calldata. Actually, calldata as storage
has been well-adopted in Ethereum Rollup projects [16], [17].
Moreover, reducing the storage cost is also a main issue
of Ethereum 2.0. Specifically, Ethereum proposes reducing
the gas cost of calldata from 16 to 3, meaning an 81%
decrease [15]. It also introduces blob [18], a new storage
mechanism which allows different Ethereum Layer-2 projects
to cheaply store all their transactions and states on the Beacon
chain. Therefore, the design of DECLOAK strongly matches
the need and tendency of Ethereum.

B. Improve the Availability of DECLOAK

Nevertheless, we can also improve the availability of DE-
CLOAK further. For example, DECLOAK can adopt a sim-
ilar availability enhancement mechanism as in POSE [3].
Specifically, every time the specified TEE executor changes
its local state, it should synchronize the state updates to
all other registered TEEs and collect their signatures in off-
chain channels to carry on the next state transfer. If the
specified TEE is not available off-chain, parties can publicly
challenge it on-chain. If the unavailability of the specified

TEE is because that other TEE executors do not respond
with signatures as expected, the specified TEE can publicly
challenge these unavailable TEEs on the blockchain. Finally,
if the on-chain challenge-response mechanism finally punishes
the specified TEE, it will be kicked out, and the next TEE
in the registered list will be specified to serve MPTs. As a
result, in an optimistic scenario, i.e., all other TEEs honestly
respond with their signatures, DECLOAK will not lose its off-
chain states if at least one TEE is available. In a word, we
stress that improving the availability of TEE network is an
orthogonal field with DECLOAK, and DECLOAK can combine
with related work [3] to further improve its availability.

X. CONCLUSION

In this paper, we develop a novel framework, DECLOAK,
which can support MPT-enabled off-chain contract execution
on legacy blockchains by using a TEE network. DECLOAK
features maximising the security of MPT and minimising the
gas cost and the network’s trust. Compared with the SOTA,
Cloak, DECLOAK not only realizes all security properties the
SOTA claimed but also achieves data availability, delivery
fairness, and delivery atomicity. To our knowledge, DECLOAK
achieves the most general and secure MPT. Meanwhile, it
assumes at least one party and executor are honest, which is
also one of the weakest assumptions compared to related work.
Moreover, according to our evaluation, DECLOAK reduces
the gas cost of the SOTA by 65.6%, and the superiority of
DECLOAK increases as the number of parties grows.

REFERENCES

[1] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A Platform for Confidentiality-
Preserving, Trustworthy, and Performant Smart Contracts,” 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), vol. 00, pp.
185–200, 2019.

[2] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts
on bitcoin,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 801–818.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
19/presentation/das

[3] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust,
and A.-R. Sadeghi, “Pose: Practical off-chain smart contract execution,”
in Proceedings of the 2022 Network and Distributed System Security
Symposium, vol. abs/2210.07110, 2022.

[4] Q. Ren, H. Liu, Y. Li, and H. Lei, “Demo: Cloak: A framework
for development of confidential blockchain smart contracts,” in 2021
IEEE 41st International Conference on Distributed Computing Systems
(ICDCS), 2021, pp. 1102–1105.

[5] Q. Ren, Y. Wu, H. Liu, Y. Li, A. Victor, H. Lei, L. Wang, and B. Chen,
“Cloak: Transitioning states on legacy blockchains using secure and
publicly verifiable off-chain multi-party computation,” in Proceedings
of the 38th Annual Computer Security Applications Conference, 2022,
pp. 117–131.

[6] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving Smart
Contracts,” 2016 IEEE Symposium on Security and Privacy (SP), pp.
839–858, 2016.

[7] R. Sinha, “Luciditee: A tee-blockchain system for policy-compliant
multiparty computation with fairness,” 2020.

[8] K. Govindarajan, D. Vinayagamurthy, P. Jayachandran, and C. Re-
beiro, “Privacy-preserving decentralized exchange marketplaces,” in
2022 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2022, pp. 1–9.

[9] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams, “Futuresmex:
Secure, distributed futures market exchange,” in 2018 IEEE Symposium
on Security and Privacy (SP), 2018, pp. 335–353.

https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://www.usenix.org/conference/usenixsecurity19/presentation/das

16

[10] C. Baum, I. Damgård, and C. Orlandi, “Publicly auditable secure
multi-party computation,” in Security and Cryptography for Networks,
M. Abdalla and R. De Prisco, Eds. Cham: Springer International
Publishing, 2014, pp. 175–196.

[11] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Zero-knowledge proofs on secret-shared data via fully linear pcps,”
Cryptology ePrint Archive, Paper 2019/188, 2019, https://eprint.iacr.or
g/2019/188. [Online]. Available: https://eprint.iacr.org/2019/188

[12] H. Cui, K. Zhang, Y. Chen, Z. Liu, and Y. Yu, “Mpc-in-multi-heads:
A multi-prover zero-knowledge proof system,” in European Symposium
on Research in Computer Security. Springer, 2021, pp. 332–351.

[13] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “Zeestar:
Private smart contracts by homomorphic encryption and zero-knowledge
proofs,” in 2022 IEEE Symposium on Security and Privacy (SP), 2022,
pp. 179–197.

[14] EthHub, “Data availability,” May 2023. [Online]. Available: https:
//ethereum.org/en/developers/docs/data-availability

[15] V. Buterin and A. Dietrichs, “Eip-4488: Transaction calldata gas cost
reduction with total calldata limit,” Nov 2021. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-4488

[16] EthHub, “Optimistic rollups,” July 2022. [Online]. Available: https:
//docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic rollups

[17] ——, “Zk-rollups,” July 2022. [Online]. Available: https://docs.ethhub.
io/ethereum-roadmap/layer-2-scaling/zk-rollups

[18] V. Buterin, D. L. Dankrad Feist, G. Kadianakis, M. Garnett, and
A. Dietrichs, “Eip-4844: Shard blob transactions,” Feb 2022. [Online].
Available: https://eips.ethereum.org/EIPS/eip-4844

[19] Ethereum, “Cancun network upgrade specification,” May 2023.
[Online]. Available: https://github.com/ethereum/execution-specs/blob
/master/network-upgrades/mainnet-upgrades/cancun.md#included-eips

[20] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2022, pp. 198–214.

[21] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

[22] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387532

[23] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[24] AMD, “Amd sev-snp: Strengthening vm isolation with integrity protec-
tion and more,” https://www.amd.com/system/files/TechDocs/SEV-SN
P-strengthening-vm-isolation-with-integrity-protection-and-more.pdf,
Jan 2020.

[25] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “Trustzone
explained: Architectural features and use cases,” in 2016 IEEE 2nd
International Conference on Collaboration and Internet Computing
(CIC), 2016, pp. 445–451.

[26] R. Pass, E. Shi, and F. Tramèr, “Formal abstractions for attested
execution secure processors,” in Advances in Cryptology – EUROCRYPT
2017, J.-S. Coron and J. B. Nielsen, Eds. Cham: Springer International
Publishing, 2017, pp. 260–289.

[27] Wikipedia, “Elliptic-curve diffie–hellman,” June 2023. [Online].
Available: https://en.wikipedia.org/wiki/Elliptic-curve Diffie%E2%
80%93Hellman

[28] C. Lederer, R. Mader, M. Koschuch, J. Großschädl, A. Szekely, and
S. Tillich, “Energy-efficient implementation of ecdh key exchange
for wireless sensor networks,” in Information Security Theory and
Practice. Smart Devices, Pervasive Systems, and Ubiquitous Networks,
O. Markowitch, A. Bilas, J.-H. Hoepman, C. J. Mitchell, and J.-J.
Quisquater, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 112–127.

[29] E. Mbadu, “Why elliptic curve diffie-hellman (ecdh) is replacing diffie-
hellman (dh),” Journal of Computing Sciences in Colleges, vol. 35, no. 3,
pp. 218–218, 2019.

[30] E. B. et al., “Recommendation for pair-wise key-establishment schemes
using discrete logarithm cryptography,” Apr. 2018. [Online]. Available:
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final

[31] D. Maier, R. Pottinger, A. Doan, W.-C. Tan, A. Alawini, H. Q. Ngo,
Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou, X. Song,
B. Zhao, H. Zhang, and G. Jiang, “Confidentiality Support over Financial
Grade Consortium Blockchain,” 2020, pp. 2227–2240.

[32] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “ZEXE:
Enabling Decentralized Private Computation,” 2020 IEEE Symposium
on Security and Privacy, 2020.

[33] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an Unfair World: Fair Multiparty Computation from Public
Bulletin Boards,” ser. Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017, pp. 719–728.

[34] M. Russinovich, E. Ashton, C. Avanessians, M. Castro, A. Chamayou,
S. Clebsch, and et al., “Ccf: A framework for building confidential
verifiable replicated services,” Microsoft Research and Microsoft Azure,
Tech. Rep., Apr. 2019.

[35] L. Cavallaro, J. Kinder, X. Wang, J. Katz, I. Bentov, Y. Ji, F. Zhang,
L. Breidenbach, P. Daian, and A. Juels, “Tesseract: Real-Time Cryp-
tocurrency Exchange Using Trusted Hardware,” ser. Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1521–1538.

[36] E. Weippl, S. Katzenbeisser, C. Kruegel, A. Myers, S. Halevi, R. Ku-
maresan, and I. Bentov, “Amortizing Secure Computation with Penal-
ties,” Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 418–429, 2016.

[37] E. Weippl, S. Katzenbeisser, C. Kruegel, A. Myers, S. Halevi, R. Ku-
maresan, V. Vaikuntanathan, and P. N. Vasudevan, “Improvements to
Secure Computation with Penalties,” Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp.
406–417, 2016.

[38] I. Ray, N. Li, C. Kruegel, R. Kumaresan, T. Moran, and I. Bentov, “How
to use bitcoin to play decentralized poker,” Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pp. 195–206, 2015.

[39] F. Baldimtsi, A. Kiayias, T. Zacharias, and B. Zhang, “Crowd verifiable
zero-knowledge and end-to-end verifiable multiparty computation,”
in Advances in Cryptology – ASIACRYPT 2020: 26th International
Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part III. Berlin, Heidelberg: Springer-Verlag, 2020, p.
717–748. [Online]. Available: https://doi.org/10.1007/978-3-030-6484
0-4 24

[40] A. Ozdemir and D. Boneh, “Experimenting with collaborative zk-
SNARKs: Zero-Knowledge proofs for distributed secrets,” in 31st
USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 4291–4308. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/ozde
mir

[41] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual international conference on the
theory and applications of cryptographic techniques. Springer, 2015,
pp. 281–310.

[42] Ethereum, “Solc 0.8.10,” July 2021. [Online]. Available: https:
//github.com/ethereum/solidity/releases/tag/v0.8.10

[43] E. Foundation, “Ethereum virtual machine,” Dec 2020. [Online].
Available: https://ethereum.org/en/developers/docs/evm/

[44] S. State and O. Labs, “Confidential Ethereum Smart Contracts,” Tech.
Rep., 12 2020.

[45] Binance, “Introducing binance oracle vrf: The next generation
of verifiable randomness,” Aug. 2023. [Online]. Available: https:
//www.binance.com/en/blog/tech/introducing-binance-oracle-vrf-the-ne
xt-generation-of-verifiable-randomness-114582038468709401

[46] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The
guard’s dilemma: Efficient Code-Reuse attacks against intel SGX,” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 1213–1227. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/present
ation/biondo

[47] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom
with transient Out-of-Order execution,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, p. 991–1008. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/bulck

[48] Intel, “Resources and response to side channel l1 terminal fault,” Dec
2021. [Online]. Available: https://www.intel.com/content/www/us/en/ar
chitecture-and-technology/l1tf.html?wapkw=l1tf

[49] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-software

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://ethereum.org/en/developers/docs/data-availability
https://ethereum.org/en/developers/docs/data-availability
https://eips.ethereum.org/EIPS/eip-4488
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups
https://eips.ethereum.org/EIPS/eip-4844
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md#included-eips
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md#included-eips
https://doi.org/10.1145/3342195.3387532
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://doi.org/10.1007/978-3-030-64840-4_24
https://doi.org/10.1007/978-3-030-64840-4_24
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://github.com/ethereum/solidity/releases/tag/v0.8.10
https://github.com/ethereum/solidity/releases/tag/v0.8.10
https://ethereum.org/en/developers/docs/evm/
https://www.binance.com/en/blog/tech/introducing-binance-oracle-vrf-the-next-generation-of-verifiable-randomness-114582038468709401
https://www.binance.com/en/blog/tech/introducing-binance-oracle-vrf-the-next-generation-of-verifiable-randomness-114582038468709401
https://www.binance.com/en/blog/tech/introducing-binance-oracle-vrf-the-next-generation-of-verifiable-randomness-114582038468709401
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html?wapkw=l1tf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html?wapkw=l1tf

17

trusted computing base,” in 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 479–498.

[50] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 857–874.

[51] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “Cure: A security architecture with customizable
and resilient enclaves,” in USENIX Security Symposium, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:226221896

[52] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 217–233.

[53] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in NDSS, 2017.

[54] F. Lang, W. Wang, L. Meng, J. Lin, Q. Wang, and L. Lu, “Mole:
Mitigation of side-channel attacks against sgx via dynamic data location
escape,” Proceedings of the 38th Annual Computer Security Applications
Conference, 2022.

https://api.semanticscholar.org/CorpusID:226221896

	Introduction
	Backgroung and primitives
	mpt
	 tee
	 ecdh Key Exchange

	Related Work
	DeCloak Design
	System Model
	Adversary Model
	System Goals
	Protocol Workflow
	Design Challenges and Highlights
	Achieve data availability of both tees and parties
	Achieve delivery fairness
	Resist Byzantine adversary with minimal transactions

	DeCloak Protocol
	Global Setup Phase
	Negotiation Phase
	Execution Phase
	Delivery Phase
	Challenge-response Subprotocol

	Implementation
	DeCloak Contract
	DeCloak Network

	 Security Analysis
	Protocol Security
	Security definitions
	Security proof

	 Architecture Security

	Evaluation
	Optimization and fine-tuning
	Improve the Scalability of DeCloak
	Reduce gas cost in optimistic cases
	Reduce gas cost in pessimistic cases
	Reduce storage cost

	Improve the Availability of DeCloak

	Conclusion
	References

